EVALUATION OF A SYSTEM INCLUDING SEPARABLE SUB-SYSTEMS OVER A MULTIDIMENSIONAL RANGE

    公开(公告)号:CA2926649A1

    公开(公告)日:2015-05-07

    申请号:CA2926649

    申请日:2014-10-17

    Applicant: QUALCOMM INC

    Abstract: An artificial neural network may be configured to test the impact of certain input parameters. To improve testing efficiency and to avoid test runs that may not alter system performance, the effect of input parameters on neurons or groups of neurons may be determined to classify the neurons into groups based on the impact of certain parameters on those groups. Groups may be ordered serially and/or in parallel based on the interconnected nature of the groups and whether the output of neurons in one group may affect the operation of another. Parameters not affecting group performance may be pruned as inputs to that particular group prior to running system tests, thereby conserving processing resources during testing.

    TRANSFER LEARNING IN NEURAL NETWORKS
    8.
    发明申请
    TRANSFER LEARNING IN NEURAL NETWORKS 审中-公开
    神经网络中的传递学习

    公开(公告)号:WO2017052709A3

    公开(公告)日:2017-05-04

    申请号:PCT/US2016039661

    申请日:2016-06-27

    Applicant: QUALCOMM INC

    CPC classification number: G06N3/08 G06N3/0454

    Abstract: A method of transfer learning includes receiving second data and generating, via a first network, second labels for the second data. In one configuration, the first network has been previously trained on first labels for first data. Additionally, the second labels are generated for training a second network.

    Abstract translation: 一种转移学习方法包括接收第二数据并且经由第一网络产生第二数据的第二标签。 在一种配置中,第一网络先前已经在第一数据的第一标签上进行了训练。 另外,生成第二个标签用于训练第二个网络。

    EVALUATION OF A SYSTEM INCLUDING SEPARABLE SUB-SYSTEMS OVER A MULTIDIMENSIONAL RANGE
    9.
    发明申请
    EVALUATION OF A SYSTEM INCLUDING SEPARABLE SUB-SYSTEMS OVER A MULTIDIMENSIONAL RANGE 审中-公开
    包含多个分立系统的系统的评估

    公开(公告)号:WO2015065738A3

    公开(公告)日:2015-07-09

    申请号:PCT/US2014061220

    申请日:2014-10-17

    Applicant: QUALCOMM INC

    Abstract: An artificial neural network may be configured to test the impact of certain input parameters. To improve testing efficiency and to avoid test runs that may not alter system performance, the effect of input parameters on neurons or groups of neurons may be determined to classify the neurons into groups based on the impact of certain parameters on those groups. Groups may be ordered serially and/or in parallel based on the interconnected nature of the groups and whether the output of neurons in one group may affect the operation of another. Parameters not affecting group performance may be pruned as inputs to that particular group prior to running system tests, thereby conserving processing resources during testing.

    Abstract translation: 可以配置人造神经网络来测试某些输入参数的影响。 为了提高测试效率并避免可能不会改变系统性能的测试运行,可以基于某些参数对这些组的影响来确定输入参数对神经元或神经元组的影响,以将神经元分组成组。 可以基于组的相互联系的性质,并且一组中的神经元的输出是否可能影响另一组的操作,可以串联和/或并行排列组。 在运行系统测试之前,不影响组性能的参数可以作为该特定组的输入修剪,从而在测试期间节省处理资源。

    SHORT-TERM SYNAPTIC MEMORY BASED ON A PRESYNAPTIC SPIKE
    10.
    发明申请
    SHORT-TERM SYNAPTIC MEMORY BASED ON A PRESYNAPTIC SPIKE 审中-公开
    基于突发性SPIKE的短期突发性内存

    公开(公告)号:WO2015119963A2

    公开(公告)日:2015-08-13

    申请号:PCT/US2015014297

    申请日:2015-02-03

    CPC classification number: G06N3/063 G06N3/049 G06N3/08 G06N3/088

    Abstract: A method for creating and maintaining short term memory using short term plasticity, includes changing a gain of a synapse based on presynaptic spike activity without regard to postsynaptic spike activity. The method also includes calculating the gain based on a continuously updated synaptic state variable associated with the short term plasticity.

    Abstract translation: 使用短期可塑性来创建和维持短期记忆的方法包括基于突触前峰值活动来改变突触的增益,而不考虑突触后峰值活动。 该方法还包括基于与短期可塑性相关联的连续更新的突触状态变量来计算增益。

Patent Agency Ranking