Abstract:
Aspects of the present disclosure relate to techniques for activating opportunistic relays. A combination of uplink and downlink pilots may be used to switch on user equipment relays (UeNBs) in an effort to make more accurate measurements in an effort to enable handovers. According to aspects of the present disclosure, a relay may evaluate one or more channel conditions, determine whether or not to transmit downlink reference signals to a UE based on the evaluation, and transmit downlink reference signals to the UE based on the determination. According to aspects, a relay may determine a set of resources reserved for transmission of uplink pilots by UEs, monitor the set of resources to detect transmission of uplink pilots, and report, to an eNB, a power at which the uplink pilots were received.
Abstract:
A backhaul quality is measured. One or more subsets of cell identifiers having a mapped backhaul quality that maps to the measured backhaul quality are identified. The one or more subsets have a set of cell identifiers associated therewith. A network is queried to indicate one or more cell identifiers in the identified subset of cell identifiers available for a user equipment (UE) relay. One of the one or more indicated cell identifiers is selected. If more than one subset of cell identifiers has a mapped backhaul quality that maps to the measured backhaul quality, first and second subsets having respective first and second mapped backhaul qualities are selected and the backhaul qualities are compared relative to a backhaul quality threshold. The mapped backhaul quality that most satisfies the backhaul quality threshold is identified for the network query.
Abstract:
Providing for fair resource sharing among wireless nodes in a wireless communication environment is described herein. By way of example, fairness can comprise establishing a set of resource sharing credits for wireless nodes. By expending credits, a node can borrow a resource of another node, to enable or enhance operation of the borrowing node. Credits for the borrowing node are decreased based on consumption of a shared resource, or credits for the lending node are increased based on such consumption, or both. Once an amount of credits expires, a node can be restricted from borrowing further resources until enough resources are lent to build up a suitable amount of credits. Accordingly, fairness can comprise correlating shared resource consumption with shared resource provisioning, to encourage participation in cooperative wireless communications.
Abstract:
Systems and methodologies are described that facilitate providing opportunistic relay node communication based on scheduling of other communications in a wireless network. In particular, a relay node can maintain a backhaul link with an access point and an access link with a mobile device to facilitate communicating information therebetween. Time slots during which the backhaul link is active can be determined and avoided during scheduling access link communications with the mobile device. Furthermore, resource assignments from the access point to the mobile device can be monitored and decoded such that time slots associated therewith can also be determined and avoided. Thus, the relay node can communicate with mobile devices in time slots where the backhaul link is inactive and/or the mobile devices are not occupied communicating directly with the access point.
Abstract:
Systems and methods are described that facilitate data communication in a wireless communication environment. According to various aspects, a node, such as an access point or an access terminal, may determine a number of channels over which it will transmit a communication signal. The node may then select channels based on whether the channels are available or unavailable, wherein available channels are preferentially selected over unavailable channels. The node may then transmit a signal over the at least one of the selected channels.
Abstract:
Frame structures and transmission techniques for a wireless communication system are described. In one frame structure, a super-frame includes multiple outer-frames, and each outer-frame includes multiple frames, and each frame includes multiple time slots. The time slots in each super-frame are allocated for downlink and uplink and for different radio technologies (e.g., W-CDMA and OFDM) based on loading. Each physical channel is allocated at least one time slot in at least one frame of each outer-frame in the super-frame. An OFDM waveform is generated for each downlink OFDM slot and multiplexed onto the slot. A W-CDMA waveform is generated for each downlink W-CDMA slot and multiplexed onto the slot. A modulated signal is generated for the multiplexed W-CDMA and OFDM waveforms and transmitted on the downlink. Each physical channel is transmitted in bursts. The slot allocation and coding and modulation for each physical channel can change for each super-frame.
Abstract:
Un aparato que comprende: medios para seleccionar al menos una tecnología de radio de entre una pluralidad de tecnologías de radio para cada ranura de tiempo en cada trama de cada trama externa de una supertrama, en el que la supertrama comprende una pluralidad de tramas externas y cada trama externa comprende una pluralidad de tramas y cada trama comprende al menos dos ranuras de tiempo; y medios para procesar datos para cada ranura de tiempo de acuerdo con la al menos una tecnología de radio seleccionada para la ranura de tiempo; en el que la al menos una tecnología de radio de entre la pluralidad de tecnologías de radio seleccionadas para cada ranura de tiempo en cada trama de cada trama externa de la supertrama es acceso múltiple por división de código de banda ancha, W-CDMA, que se selecciona para al menos una ranura de tiempo en cada trama para formar al menos un ranura de W-CDMA, y en el que se selecciona W-CDMA o multiplexación por división ortogonal de frecuencia, OFDM, para cada ranura de tiempo restante en la trama para formar más ranuras de W-CDMA o ranuras de OFDM, dando lugar dicha selección a una mezcla de ranuras de W-CDMA y OFDM en enlace descendente o enlace ascendente.
Abstract:
Various systems and methods for network management are disclosed. In one embodiment, a network management system comprises a receiver for receiving data from a plurality of entities, including base stations and/or subscriber handsets, a processor for generating a network map or a recommendation based on the received data, a display device for displaying the network map or recommendation, and a transmitter for transmitting instructions based on the recommendation.