Abstract:
A method and apparatus for variable rate communication incorporating coherent signal processing and combining is described. Within the receive system, vectors of in-phase and quadrature-phase Walsh correlator output values are generated for each Rake finger over each Walsh symbol period. In-phase and quadrature-phase reference values are generated for each of the Rake fingers by combining the in-phase and quadrature-phase correlator outputs of the most likely Walsh symbols over a series of Walsh symbol periods. The output energies are calculated as the sum of squared in-phase and quadrature-phase values. The vectors of in-phase and quadrature-phases values are then projected on the in-phase and quadrature-phase reference values and weighted by the reference amplitude. The reference amplitude is the square root of the sum of squared in-phase and quadrature-phase values. The vectors of projected and weighted values are summed via coherently combining, and the corresponding values from the other Rake fingers used to obtain a resultant vector of coherently demodulated Walsh correlator outputs.
Abstract:
A variable rate communication incorporating coherent signal processing and combining is described. Within the receive system (100, 102 and 106), vectors of in-phase and quadrature-phase Walsh correlator output values (W(i)I and W(i)Q) are generated for each Rake finger over each Walsh symbol period. Inphase and quadrature-phase reference values (R(i)I and R(i)Q) are generated for each of the Rake fingers by combining the in-phase and quadrature-phase correlator outputs of the most likely Walsh symbols over a series of Walsh symbol periods. The most likely Walsh symbols are determined on a symbol-by-symbol basis by summing the Walsh correlator output energies from each finger and selecting the largest. The vectors of in-phase and quadrature-phase values are then projected (116) on the in-phase and quadrature-phase reference values and weighted by the reference amplitude. The vectors of projected and weighted values are summed via coherently combining (118), and the corresponding values from the other Rake fingers used to obtain a resultant vector of coherently demodulated Walsh correlator outputs (120). The coherently demodulated Walsh correlator outputs are used to form soft decisions (134, 136) that are deinterleaved and soft-decision Viterbi decoded.
Abstract:
System (s) and method (s) are provided for transmitting data code Symbols and control code symbols spanning disparate transmission time intervals in the uplink. Data and control symbols that overlap in time-domain within a transmission time interval are- multiplexed and transmitted employing resources scheduled for data transmission (1030), whereas data and control code symbols that are not multiplexed are transmitted in respective allocated resources (1040). Multiplexing in conjunction with localized and distributed resource scheduling preserves the single-carrier characteristics of a single-carrier frequency division multiple access system.
Abstract:
A method and apparatus for performing handoff in a wireless communication system with multi-carrier modulation (MCM) for a forward link and CDMA for a reverse link. In one embodiment, a method of performing handoff on the forward link for a terminal is provided in which signal quality of pilots received by the terminal from a plurality of base stations in the system is determined. A particular base station for subsequent data transmission on the forward link to the terminal is selected based on the signal quality determined for the plurality of base stations. A request to be handed off to the particular base station is initiated if the particular base station is different than a currently selected base station.
Abstract:
Techniques to more accurately measure the arrival times of transmissions received at a remote terminal from a number of base stations. In one aspect, unassigned finger processors are used to process and measure the arrival times of transmissions from base stations not in the active set. In another aspect, if no finger processors are available for assignment, the arrival times can be measured in the time period between updates of a reference oscillator used for the measurements. In accordance with a method for determining a position of a remote terminal, a first set ofone or more base stations in active communication with the remote terminal is identified and each base station in the first set is assigned at least one finger processor. A second set of one or more base stations not in active communication with the remote terminal is also identified and an available finger processor is assigned to each of at least one base station in the second set. A (signal arrival) time measurement is then provided for further processing. To improve accuracy, the measurements can be performed within a narrow time window.
Abstract:
A method and apparatus for a communication system provide for fast link setup for a mobile station by transmitting a request message, transmitting an assignment message from the base station to the mobile station, and transmitting a notification message from the base station to a base station controller. The mobile station transmits an indication message to the base station controller indicating a successful completion of acquiring the data packet channel. The base station controller processes the indication message for message integrity and security feature. A portion of the available communication resources at the base station is allocated for an immediate response to the request message for acquiring a data packet channel.
Abstract:
A method and apparatus for performing handoff in a wireless communication system with multi-carrier modulation (MCM) for a forward link and CDMA for a reverse link. In one embodiment, a method of performing handoff on the forward link for a terminal is provided in which signal quality of pilots received by the terminal from a plurality of base stations in the system is determined. A particular base station for subsequent data transmission on the forward link to the terminal is selected based on the signal quality determined for the plurality of base stations. A request to be handed off to the particular base station is initiated if the particular base station is different than a currently selected base station.
Abstract:
The present invention is a novel and improved method and apparatus for reducing peak to average ratio in a system using auxiliary pilot channels as described in the TIA/EIA TR45.5 "cdma2000 ITU-R RTT Candidate Submission" to the ITU for consideration in the third generation wireless communication systems. A first method proposed in the present invention to deal with the above stated problem is to alter the phase of the auxiliary pilot channels to reduce to prevent the auxiliary pilot channels from adding constructively. A second method proposed in the present invention to deal with the above stated problem is to gate out the portion of the auxiliary pilot channels that add constructively. The present invention also proposes a novel demodulator design for receiving signals using the modified auxiliary pilot signals.