Abstract:
The present specification discloses a covert mobile inspection vehicle with a backscatter X-ray scanning system that has an X-ray source and detectors for obtaining a radiographic image of an object outside the vehicle. The system is configured to also simultaneously detect passive radiation. The systems preferably include at least one sensor for determining a distance from at least one of the detectors to points on the surface of the object being scanned, a processor for processing the obtained radiographic image by using the determined distance of the object to obtain an atomic number of each material contained in the object, and one or more sensors to obtain surveillance data from a predefined area surrounding the vehicle.
Abstract:
The present invention provides a gamma-neutron detector based on mixtures of thermal neutron absorbers that produce heavy-particle emission following thermal capture. The detector consists of one or more thin screens embedded in transparent hydrogenous light guides, which also serve as a neutron moderator. The emitted particles interact with the scintillator screen and produce a high light output, which is collected by the light guides into a photomultiplier tube and produces a signal from which the neutrons are counted. Simultaneous gamma-ray detection is provided by replacing the light guide material with a plastic scintillator. The plastic scintillator serves as the gamma-ray detector, moderator and light guide. The neutrons and gamma -ray events are separated employing Pulse-Shape Discrimination (PSD). The detector can be used in several scanning configurations including portal, drive -through, drive -by, handheld and backpack, etc.
Abstract:
The present specification discloses an X-ray scanning system with a non-rotating X-ray scanner that generates scanning data defining a tomographic X-ray image of the object and a processor executing programmatic instructions where the executing processor analyzes the scanning data to extract at least one parameter of the tomographic X-ray image and where the processor is configured to determine if the object comprises a liquid, sharp object, narcotic, currency, nuclear materials, cigarettes or fire-arms.
Abstract:
The present specification discloses a radiographic inspection system for screening an area. The inspection system has a container that defines an enclosed volume, a radiation source positioned within the enclosed volume, a detector array, a movable structure attached to a portion of the base of the container, and a controller programmed to move the movable structure to achieve an optimum height of the radiation source's field of view based upon a plurality of data.
Abstract:
The present specification discloses a multi-view X-ray inspection system having, in one of several embodiments, a three-view configuration with three X-ray sources. Each X-ray source rotates and is configured to emit a rotating X-ray pencil beam and at least two detector arrays, where each detector array has multiple non-pixellated detectors such that at least a portion of the non-pixellated detectors are oriented toward both the two X-ray sources.
Abstract:
La presente especificación describe un detector de radiación multi-energía mejorado; en una modalidad, la señal generada por el medio de detección es convertida a forma digital directamente en el punto de la recolección de señal; esto evita la necesidad de amplificadores de ancho de banda alto de potencia intensa y convertidores análogo-a-digital, ya que integra el dispositivo de detección y el procesamiento de señal en el mismo sustrato de silicio para reducir el número de componentes en el sistema; en una modalidad, un diodo de avalancha de fotón único (SPAD) está acoplado directamente a un detector de umbral para lograr un detector de bajo ruido y baja potencia intrínsecamente.
Abstract:
The present specification discloses a high speed scanning system for scanning cargo carried by rail. The system uses of a two-dimensional X-ray sensor array with, in one embodiment, a cone-beam X-ray geometry. The pulse rate of X-ray source is modulated based on the speed of the moving cargo to allow a distance travelled by the cargo between X-ray pulses to be equal to the width of the detector, for a single energy source, and to half the width of the detector for a dual energy source. This ensures precise timing between the X- ray exposure and the speed of the passing object, and thus accurate scanning of cargo even at high speeds.