Abstract:
An ultrasonic processing method is disclosed wherein during the processing time interval the motional amplitude and engaging force of the resonating horn (20) and thereby the power and engaging pressure to the workpiece (24) is varied to improve weld strength and decrease weld cycle time. The variation in motional amplitude and engaging force may be in response to a process condition such as a change in dimensions of the workpiece, a sharp rise in the transducer power curve, or in response to the lapse of a predetermined time interval.
Abstract:
To provide a vibration conversion apparatus capable of reducing occurrence of cracks although using a longitudinal vibration converter for obtaining a torsional vibration. The vibration conversion apparatus comprises: a first longitudinal vibration converter and a longitudinal-torsional transducer having a one-wavelength torsional vibrator portion and a first flexural resonator portion. The first flexural resonator portion is interposed between the first longitudinal vibration converter and the one-wavelength torsional vibrator portion. The first flexural resonator portion is configured such that when a longitudinal vibration generated by at least the first longitudinal vibration converter is received from one end of the first flexural resonator portion, the first flexural resonator portion is bent and imparts a rotational force from the other end of the first flexural resonator portion to the one-wavelength torsional vibrator portion.
Abstract:
A mechanical vibration machining apparatus or the like is suitable for forming a stable machined surface. A mechanical vibration machining apparatus performs machining of a machining target using a horn. A control unit instructs the horn to perform a mechanical vibration operation and a rotational driving operation. The control unit controls the mechanical vibration and/or the rotational driving in a periodic manner. For example, the control unit supports intermittent alternating control. That is to say, when one from among the mechanical vibration and the rotational driving is provided, the other is suspended. Such periodic control allows the stress that occurs due to the applied force to be dispersed, thereby allowing a stable machined surface to be formed.
Abstract:
The present invention includes: an ultrasonic horn (14) to which two ultrasonic vibrations can be input to excite a capillary (15) mounted to a front end with different frequencies in a Y-direction and an X-direction; and a control unit (50) which adjusts the respective magnitude of the two ultrasonic vibrations. The Y-direction is a direction in which the ultrasonic horn (14) extends. The control unit (50) adjusts the respective magnitude of the two ultrasonic vibrations to adjust a ratio (ΔY/ΔX) of amplitude of the capillary (15) in the Y-direction and the X-direction. Thus, degradation in the quality of the joining between wires and leads is suppressed.
Abstract:
A novel mode of ultrasonic oscillation is generated in a Langevin ultrasonic transducer comprising a metal block, a metal block provided with a supporting means protruding in a ring shape on its side surface, and polarized piezoelectric elements fixed between these metal blocks, by connecting the ultrasonic transducer to a base via the supporting means, whereby supporting the ultrasonic transducer on the base in a restrained state, and applying to the piezoelectric elements a voltage having such frequency that the ultrasonic transducer generates an ultrasonic oscillation with back-and-forth motion in a direction perpendicular to plane surfaces of the piezoelectric elements which has no oscillation node within the ultrasonic transducer; this novel ultrasonic oscillation mode is utilized for performing ultrasonic machining methods as well as for ultrasonic transmission method.
Abstract:
There is disclosed a sonotrode comprising: a head which defines a sealing surface elongated along a first direction orthogonal to a second direction and at least one first slot which extends through the head transversally to the first direction; the first slot extends parallel to a third direction inclined to both the first direction and the second direction; the first direction defines an acute angle with the second direction.
Abstract:
A device for processing workpieces uses ultrasound, with an resonant system comprising an ultrasound generator, an ultrasound sonotrode, and an anvil, wherein a workpiece is processed between the anvil and the ultrasound sonotrode. The ultrasound generator comprises a regulation means which has a regulation member connected upstream of the ultrasound generator to receive a feedback signal from the resonant system and to generate a regulation variable which is supplied to the ultrasound generator. A connecting point is provided between the regulation member and the ultrasound generator, at which the regulation variable of the regulation member is linked to a process variable from the processing procedure.
Abstract:
A device for processing workpieces uses ultrasound, with an resonant system comprising an ultrasound generator, an ultrasound sonotrode, and an anvil, wherein a workpiece is processed between the anvil and the ultrasound sonotrode. The ultrasound generator comprises a regulation means which has a regulation member connected upstream of the ultrasound generator to receive a feedback signal from the resonant system and to generate a regulation variable which is supplied to the ultrasound generator. A connecting point is provided between the regulation member and the ultrasound generator, at which the regulation variable of the regulation member is linked to a process variable from the processing procedure.
Abstract:
The method of controlling a linear vibration welding apparatus, in accordance with the invention, may comprise the steps of: fastening a first workpiece portion in a fixed position; fastening a second workpiece portion to a reciprocating member; energizing a first single winding magnet with direct current power to create a magnetic field; sensing a location of the reciprocating member with respect to a zero point; and energizing a second magnet when the reciprocating member has crossed the zero point when moving towards the first magnet. The linear vibration welding apparatus in accordance with the invention may comprise: a frame; a flexure array; a first magnet assembly; a second magnet assembly; a digital controller; and direct current amplifiers for powering the magnet assemblies.
Abstract:
A method of welding two thermoplastic workpieces (W) together along a predetermined weld line during a weld cycle utilizing a high frequency vibration sonic or ultrasonic welding apparatus. This welding apparatus includes an electroacoustic transducer (18) which transmits such vibrations to a horn (19) which is dimensioned to be resonant with the horn being brought into forced engagement with at least one of the workpieces to be welded. The method comprising the steps of bringing the workpieces into bearing relation against one another along the weld line. Then the electroacoustic transducer is energized so as to resonate the horn with a desired motional amplitude. Forceful contact is established between the horn and one of the workpieces. Then, the forceful contact between the horn and the one workpiece is maintained throughout the weld cycle. The motional amplitude of the horn is varied in accordance with a desired motional amplitude profile.