Abstract:
Aspects described herein relate to an apparatus, system, and method for the airborne launch of inflatable, lighter-than-air devices from aircraft. In some instances, a container comprising a drag parachute and a main parachute assembly may be deployed from an aircraft. Drag forces on the container may cause the drag parachute to be expelled from the container. Drag forces on the drag parachute may cause the main parachute assembly to be expelled from the container. The main parachute assembly may include a canopy with an opening and a release channel connecting the opening with the container. The container may further include a balloon inflation mechanism, which may be used to inflate one or more balloon envelopes. The one or more balloon envelopes, after being inflated, may be configured to be released from the container, traverse the release channel, and exit the main parachute assembly through the opening.
Abstract:
A buoyant aerial vehicle includes a buoyant vehicle body in which gas having a specific gravity smaller than air is hermetically filled, a vertical propulsion propeller which provides vertical propulsive force, and a horizontal propulsion propeller which provides horizontal propulsive force The buoyant vehicle body is configured with flotation chambers and connecting portions. The flotation chambers are arranged at positions point-symmetric with respect to a center of the buoyant vehicle body. Central portions of the flotation chambers are bulged in a side view and the connecting portions connect the flotation chambers. The connecting portions are formed in a flat shape thinner than the central portions of the flotation chambers such that wind passages along which the air flows are formed on the connecting portions, and the wind passages are oriented in at least two directions in the plan view.
Abstract:
The present invention provides an unmanned aerial vehicle (UAV) such as a rotorcraft and a method of improving the performance thereof. The UAV is equipped with an inflated bag to prevent or alleviate property damage and personal injury caused by a collision between the UAV and a foreign object (e.g. a human being and a pet). The inflated bag in the proximity of a propeller's tip can also disrupt the tip vortex of the propeller generated in UAV operation state. The invention exhibits numerous technical merits such as enhanced operational safety, UAV drag reduction, higher propulsive efficiency, and reduction of UAV vibration level, among others.
Abstract:
An aerial vehicle comprises an elongate envelope within which are at least one first compartment for holding a lighter than air gas and at least one second compartment for holding atmospheric air and said at least one second compartment having an inlet and an outlet and at least one pair of wings extending laterally from the envelope; said wings being planar units with a leading and trailing edge, the width of the wings from their leading edges to their trailing edges being substantially less than the length of the envelope with airfoil portions fitted between the leading and trailing edges of the wing: the top and bottom of the wings are mirror images of one another; in which forward motion of the vehicle is obtainable without trust through alternate diving and climbing motion.
Abstract:
Disclosed herein are example embodiments for unoccupied flying vehicle (UFV) location assurance. For certain example embodiments, at least one machine, such as a UFV, may: (i) obtain one or more satellite positioning system (SPS) coordinates corresponding to at least an apparent location of at least one UFV; or (ii) perform at least one analysis that uses at least one or more SPS coordinates and at least one assurance token. However, claimed subject matter is not limited to any particular described embodiments, implementations, examples, or so forth.
Abstract:
Lighter-than-air systems, methods, and kits for obtaining aerial images are described. For example, various methods for determining planned ascent, drift, and/or descent of a lighter-than-air system are described. In addition, various structural arrangements of lighter-than-air systems for accomplishing planned ascent, drift, and/or descent and obtaining aerial images are described.
Abstract:
The invention relates to an airship comprising a flexible envelope having at least one adjustment region provided with two longitudinal adjustment elements mounted in opposition and mobile in relation to each other between a maximum distancing position and a minimum distancing position, the two longitudinal adjustment elements being connected to each other by a group comprising a plurality of cables crossing the inner space of the envelope, each of the cables cooperating with a plurality or tightening points provided along each longitudinal element. The cables are connected to at least one tightening module that can exert a tightening or loosening action on the cables and thereby bring the longitudinal adjustment elements closer together or move them further away.
Abstract:
Lighter-than-air systems, methods, and kits for obtaining aerial images are described. For example, various methods for determining planned ascent, drift, and/or descent of a lighter-than-air system are described. In addition, various structural arrangements of lighter-than-air systems for accomplishing planned ascent, drift, and/or descent and obtaining aerial images are described.
Abstract:
The present invention is an apparatus and system for providing surveillance of an area or a space. According to some embodiments of the present invention there may be provided a housing containing a deployable and inflatable surveillance balloon, which balloon may elevate and/or support a surveillance payload including one or more sensor assemblies. Data collected by the sensors may be transmitted to a user interface which may display the data to a user.
Abstract:
The present invention provides a position control system for a remote-controlled vehicle, a vehicle operated by the control system, and a method for operating a remote-controlled vehicle. An electromagnetic energy receiver is configured to receive an electromagnetic beam. The electromagnetic energy receiver is further configured to determine a position of the remote-controlled vehicle relative to a position of the electromagnetic beam. The vehicle is directed to maneuver to track the position of the electromagnetic beam.