Abstract:
The invention concerns a method for preparing alkyl nitrites of formula (I) R ONO (I) ONO wherein R represents a C1-C20, advantageously C2-C10 linear or branched alkyl group. The invention is characterised in that it consists in gradually and continuously adding in an aqueous medium, an alcohol of formula (II) R OH, R being as defined above, a nitrite of formula (III) M NO2, wherein M represents a metal cation, and a strong acid, so as to form continuously said alkyl nitrite, and in continuously drawing off said alkyl nitrite thus formed from the reaction medium.
Abstract:
In a continuous process for the preparation of alkyl nitrites and dinitrites, an alkanol or dialkanol is first mixed with an aqueous mineral acid, the reaction mixture obtained is then reacted with an inorganic nitrite and the product obtained can then be isolated immediately.
Abstract:
The present disclosure relates to devices and methods for the preparation of amyl nitrite formulations at a point of use location from relatively shelf-stable reagents employing acidic cationic exchange resins.
Abstract:
The present invention relates to a process for producing C1-C4 alkyl nitrite, comprising loading a resin catalyst layer and/or a porous filler layer into a reactor, passing nitrogen oxide, oxygen and C1-C4 alkanol as raw materials through the resin catalyst layer and/or porous filler layer in a counter current, parallel current or cross current manner, reacting under the conditions including a reaction temperature of from 0 to 150° C., a reaction pressure of from −0.09 to 1.5 MPa, a molar ratio of C1-C4 alkanol/nitrogen oxide of 1-100:1, a molar ratio of nitrogen oxide/oxygen of 4-50:1, to obtain an effluent containing C1-C4 alkyl nitrite, wherein said nitrogen oxide is NO, or a mixed gas containing NO and one or more selected from N2O3 and NO2.
Abstract:
In a continuous process for the preparation of alkylnitrites and dinitrites, an alkanol or dialkanol is first mixed with an aqueous mineral acid, the reaction mixture obtained is then reacted with an inorganic nitrite and the product obtained can then be isolated immediately.
Abstract:
The invention provides a process for the production of C.sub.1 to C.sub.5 alkyl nitrite by forming an aqueous solution of C.sub.1 to C.sub.5 alkyl alcohol an alkali metal nitrite; cooling it; then slowly adding a hydrohalic acid solution while it is stirring; the reaction temperature is maintained in the range of from about -10.degree. C. to about 10.degree. C. until the reaction is substantially complete; and the two formed phases are separated in a separatory funnel.
Abstract:
A process and reaction vessel for producing alkyl nitrite is disclosed the process comprising (a) contacting nitric oxide, lower alcohol and oxygen in a reaction zone such that alkyl nitrite is formed, said reaction zone comprising a reactor section and a rectification section, (b) supplying a liquid scrubbing agent to an upper portion of the rectification section, (c) withdrawing a gaseous alkyl nitrite product stream from the upper portion of the rectification section, and (d) withdrawing a liquid stream from a lower portion of the reactor section. The reactor section provides intimate vapor-liquid contact sufficient to enhance the conversion of nitric oxide to alkyl nitrite and the rectification section provides sufficient vapor residence time to enhance conversion of oxygen, as well as sufficient rectification capabilities to reduce the amounts of water and nitric acid in the gaseous alkyl nitrite product stream.
Abstract:
2-Perfluoroalkyl ethanols are obtained by reacting 2-perfluoroalkyl ethyliodides with at least the two-fold molar amount of nitric acid of about 70 to 98 percent strength and hydrogenating the intermediates, which are the nitrates of the desired ethanols. The products are useful as starting materials for the production of hydrophobic and oleophobic textile finishing agents, e.g. the polymer acrylates and methacrylates of said 2perfluoroalkyl-ethanols.