Abstract:
A method for warming up a vacuum pump arrangement having a booster pump and a backing pump downstream of the booster pump for evacuating a process chamber includes setting the booster pump at a first speed higher than an idle speed of the booster pump when the same is in an idle mode; and controlling a backing pressure at an outlet of the booster pump within a range from 0.1 mbar to 10 mbar at least for a period of time from when the vacuum pump arrangement is activated from the idle mode to when the booster pump reaches a temperature equal to or exceeding a first predetermined threshold value. Such method is implemented in system where a controlled is configured to carry out the above-motioned actions.
Abstract:
A control device for an electric pump, the electric pump pumping a cooling medium, the control device includes a controller configured to determine a presence of an abnormality in the electric pump when a temperature of the cooling medium is higher than a threshold value and the electric pump is locked. The threshold value being predetermined as a temperature that is higher than a freezing point of the cooling medium.
Abstract:
A method for calculating the probability of moisture build-up in a compressor includes the steps of sensing a temperature of the ambient air, sensing a discharge pressure of the compressor, sensing a temperature of the compressor, processing the ambient air temperature and operating pressure sensed to obtain a required temperature at which condensation will form, and comparing the temperature of the compressor to the required temperature.
Abstract:
A hydraulic pump system is provided that includes a pump driven by an electric motor. The electric motor includes windings that receive power from a power source. In one example, a temperature sensor is arranged in proximity to hydraulic fluid associated with the pump, such as at an input of the pump. In another example, the temperature sensor measures the ambient temperature to predict the viscosity of the pump based upon cool down rates of the system. A controller monitors a temperature at the temperature sensor and commands power to be provided to the windings to generate heat. Electric motor power consumption can be monitored to determine viscosity. The heat reduces the viscosity of the hydraulic fluid. Bleed air may be selectively provided to a casing associated with the hydraulic fluid in response to a command from the controller. The controller actuates a valve to regulate the flow of bleed air to the casing to provide supplemental heat to the heat provided by the windings. In this manner, the viscosity of the hydraulic fluid is more efficiently managed to provide desired startup of the pump in cold conditions.
Abstract:
In a method for controlling a compressor (2) in a closed level adjustment system, the actual compressor temperature is continuously determined, at least during operation of the compressor, and the compressor (2) is disconnected when it reaches a threshold temperature. Admission pressure and counter-pressure of the compressor are taken into account in order to determine the actual compressor temperature. Preferably, the actual compressor temperature t is adapted by a value dT after each unit of time has elapsed while the compressor is operating, said value depending upon the difference between counter pressure and admission pressure (pcounter−padmission).
Abstract:
A pressure sensor subsystem measures the pressure within a fuel pump and outputs an under-pressure signal when the measured pressure is below a predetermined threshold pressure value. A temperature sensor subsystem measures the temperature within the fuel pump and outputs an over-temperature signal when the measured temperature is above a predetermined threshold temperature value. A timing circuit monitors the pressure sensor subsystem and the temperature sensor subsystem for output of the under-pressure and over-temperature signals and outputs a pump disconnect signal when at least one of the signals is output for a prescribed time duration. A power controller disengages power from the pump upon output of a pump disconnect signal by the timing circuit.
Abstract:
An apparatus for protecting a fluid pump motor includes an electric motor for driving a pump head to pressurize a fluid. A liner is positioned in the motor air gap to prevent pressurized fluid from contacting one or more magnetic field producing elements of the stator. The liner includes a thin wall to minimize the air gap distance. The liner wall is made thin enough that, under loading of the pressurized fluid, the liner wall deforms and bears against one or more of the field producing elements of the stator for structural support. The liner is preferably fabricated as a single metal part using a deep drawing process that results in a can having opposed open and closed ends with a substantially uniform cross-section between the open and closed ends of the can.
Abstract:
A fluid impermeable barrier is provided to protect the rotor of an electric motor. The barrier includes a body portion with a relatively large opening at one end to receive the rotor laminations and a smaller opening at the other end to receive one end of the rotor shaft. With the body portion positioned about the laminations, a cap with an outer perimeter and central opening is slid down the other end of the rotor shaft to close the large opening in the body portion. The assembly is completed by sealingly attaching the outer perimeter of the cap to the large opening in the body portion and sealingly attaching the smaller openings in the cap and body portion to respective portions of the rotor shaft. Thus, the fluid impermeable rotor barrier includes no more than two parts that are assembled onto the rotor using no more than three areas of attachment.
Abstract:
A reciprocating piston type compressor for compressing refrigerant gas for an automobile air conditioning system is improved to protect itself without protective control by a computer. The compressor detects the temperature of a part of the compressor in which the temperature increases to higher than a predetermined critical temperature when the compressor malfunctions, and changes a displacement control valve to reduce the displacement of the compressor when the detected temperature is higher than the predetermined critical temperature.
Abstract:
A low profile positive displacement pump system is disclosed. The pump system includes a gasoline powered engine with a vertically disposed crank shaft. The system also includes a piston pump with at least one horizontally disposed piston, and a pump shaft assembly which mounts onto the crank shaft. A base including a cavity for retaining the pump is provided. The engine mounts directly onto the base, and fixes the orientation of the pump shaft assembly with respect to a driven end of each piston. The pump shaft assembly includes at least one eccentric camming surface for contacting a driven end of the piston and for causing each piston to complete one stroke per revolution of shaft rotation.A high pressure piston pump base is disclosed, comprising a main body including an upper surface, wherein the upper surface is suitable for mounting directly to a mounting flange of a gasoline powered engine having a vertically disposed drive shaft. A central cavity is provided which is of a size and shape suitable for retaining a high pressure pump. The cavity is of a size suitable for holding the pump stationary during operation.A high pressure, low profile twin piston pump suitable for being driven by means of a gasoline powered engine with a vertically disposed crank shaft is also disclosed.