Abstract:
The present invention provides a highly reliable spectral module. When light L1 proceeding to a spectroscopic unit (4) passes through a light transmitting hole (50) in the spectral module (1) in accordance with the present invention, only the light having passed through a light entrance side unit (51) formed such as to become narrower toward a substrate (2) and entered a light exit side unit (52) formed such as to oppose a bottom face (5 1b) of the light entrance side unit (51) is emitted from a light exit opening (52a). Therefore, stray light M incident on a side face (51c) or bottom face (51b) of the light entrance side unit (51) is reflected to the side opposite to the light exit side unit (52) and thus is inhibited from entering the light exit side unit (52). Therefore, the reliability of the spectral module (1) can be improved.
Abstract:
The invention relates to a multi-spectral image sensor having a two-dimensional array of super-pixels, wherein each super-pixel has at least five sensor elements (11), each comprising a pixel sensor (14), a filter structure (12) having at least one structured layer made of metal or polycrystalline semi-conductor material, which, in response to the electromagnetic radiation of a wavelength region, results in a higher transmission through the filter structure to the pixel sensor (14) than wavelengths surrounding the wavelength region, wherein the at least five sensor elements (12) are jointly integrated on a semi-conductor substrate (16) and are configured on different wavelength regions in pairs.
Abstract:
A method of analyzing a remotely-located object includes the steps of inducing a volume of an ionized ambient gas (614) to emit pulsed terahertz radiation (615) directed toward a targeted object (616) by focusing an optical pump beam (612) in the volume and ionizing another volume of the ambient gas to produce a sensor plasma (626) by focusing an optical probe beam (624) in the other volume of ambient gas. The interaction, in the sensor plasma (626), of the focused optical probe beam (624) and an incident terahertz wave (618), which is produced by the targeted object (616) reflecting, scattering, or transmitting the pulsed terahertz radiation (615), produces a resultant radiation (628). Detecting an optical component of the resultant radiation (628) emitted by the sensor plasma (626) facilitates detection of a signature of the targeted object (616) imposed onto the incident terahertz radiation (618).
Abstract:
A birefringent plate depolarizer (71) functions as a polarization-scrambling element and varies polarization with wavelength. One such depolarizer comprises more than two (e.g., three) plates (73, 74, 75), where all the plates are of substantially different thickness and rotation angle (α1, α2) of their ordinary axis (77, 78, 79). A depolarizer (222) of this kind may be incorporated within a small-spot imaging, spectrometry instrument (200) between the polarization-introducing components of the system, such as the beamsplitter (215), and the microscope objective (224) of the system. Sinusoidal perturbation in the resulting measured spectrum can be removed by data processing techniques or, if the depolarizer is thick or highly birefringent, the perturbation may be narrower than the wavelength resolution of the instrument.
Abstract:
Optical systems that provide for simultaneous images and spectra from an object, such as a tissue sample, an industrial object such as a computer chip, or any other object that can be viewed with an optical system such as a microscope, endoscope, telescope or camera. In some embodiments, the systems provide multiple images corresponding to various desired wavelength ranges within an original image of the object, as well as, if desired, directional pointer(s) that can provide both an identification of the precise location from which a spectrum is being obtained, as well as enhancing the ability to point the device.
Abstract:
A hemispherical detector comprising a plurality of photodetectors (12) arranged in a substantially contiguous array, the array being substantially in the shape of a half-sphere, the half-sphere defining a closed end (50) and an open end (60), the open end (60) defining a substancially circular face. Also provided is a method for constructing a hemispherical detector comprising the steps of making a press mold of the desired shape of the hemispherical detector, pouring a material into the press mold to form a cast, finishing the cast to remove any defects, coating the cast with a coating material, and attaching a plurality of photodetectors to the cast.
Abstract:
A multiwavelength selector for use with a high speed performance monitor, that uses a spatial wavelength separator, a configurable spatial filter, a focusing assembly, and a photodetector to select a wavelength or wavelengths from a plurality of incoming wavelengths, for further processing by said high speed performance monitor. The invention is intended for use in fiber optic network application.