Abstract in simplified Chinese:本发明系关于一种用于测定流体样本中分析物(例如葡萄糖)浓度的系统,其包含一光源、一侦测器及一中央处理单元。该侦测器适于接收与自所分析之流体样本返回之光相应的光谱信息且将所接收之光谱信息转换为指示所接收之光谱信息之电信号。该中央处理单元适于将该电信号与一基于与体液中分析物之相关性创建之算法相比较。该算法适于将该接受之光谱信息转换为体液中分析物之浓度。光谱信息自该中央处理单元传递至该光源且用以改变光之强度及时限以改良转换为分析物浓度之精确度。
Abstract in simplified Chinese:使可以利用近红外线而测定卡路里,借由非破坏性方法以短时间且简易实现物体之卡路里测定。具备有:拥有载置被检对象之物体M之台2的物体保持部1;和照射近红外区域之光至被载置在台2上之被检对象物体M上的光源部20;接受来自该物体M之反射光或是透过光的受光部30;和根据受光部30所接受到之光的吸光度算出物体M之卡路里的控制部40,在控制部40中,借由被照射到事先已知卡路里之样品物体M,且自样品物体M被反射或是透过之近红外线之吸光度中的二次微分光谱之复回归分析所算出的回归式,和受光部30所接受到之光的吸光度,运算物体M之卡路里。
Abstract:
Verfahren und Vorrichtung zur Ansteuerung eines akustooptischen Bauteils zum Beeinflussen hindurchtretenden Lichtes, insbesondere zur Beeinflussung des Beleuchtungs- und/ oder Detektionslichtes im Strahlengang eines Mikroskops, vorzugsweise eines Laser-Scanning-Mikroskops, wobei eine Einstellung der Beleuchtungs und/oder Detektionswellenlänge mit mindestens einem Frequenzgenerator erfolgt der mit dem akustooptischen Bauteil verbunden ist und die Beeinflussung steuert, wobei, vorzugsweise zur Gewährleistung einer temperaturunabhängigen Beeinflussung, der Frequenzgenerator ein Signal erzeugt das für die Intensitätsverteilung der Wellenlänge des Beleuchtungs und/oder Detektionslichtes eine spektrale Spreizung erzeugt wobei die Ansteuerung durch zwei oder mehrere Ansteuersignale derart erfolgt dass zwei oder mehr sich überlappende und/ oder überlagernde Hauptkeulen der Übertragungsfunktion des akustooptischen Bauteils oder Hauptmaxima erzeugt werden.
Abstract:
Die Erfindung betrifft ein Mikroskop mit einer akustooptischen Vorrichtung (13), die mit einer mechanischen Welle, die durch eine, vorzugsweise einstellbare, Frequenz charakterisiert ist, aus einem polychromatischen und kollinearen Detektionslichtbündel (18) Anteile von an einer Probe gestreutem und/oder reflektiertem Beleuchtungslicht einer der Frequenz zugeordneten Beleuchtungslichtwellenlänge entfernt. Das Mikroskop zeichnet sich dadurch aus, dass ein Kristall (30) der akustooptischen Vorrichtung, in dem die mechanische Welle propagiert, und die Ausbreitungsrichtung der mechanischen Welle zu dem in den Kristall einfallenden Detektionslichtbündel derart ausgerichtet sind, dass die akustooptische Vorrichtung mit der mechanischen Welle sowohl den die Beleuchtungswellenlänge und eine erste Linearpolarisationsrichtung aufweisenden Anteil des Detektionslichtbündels, als auch den die Beleuchtungswellenlänge und eine zweite, zur ersten Linearpolarisationsrichtung senkrechten Linearpolarisationsrichtung aufweisenden Anteil des Detektionslichtbündels ablenkt und dadurch aus dem Detektionslichtbündel entfernt.
Abstract:
The development of a multiple-channel dual phase lock-in optical spectrometer (LIOS) is presented, which enables parallel phase-sensitive detection at the output of an optical spectrometer. The light intensity from a spectrally broad source is modulated at the reference frequency, and focused into a high-resolution imaging spectrometer. The height at which the light enters the spectrometer is controlled by an acousto-optic deflector, and the height information is preserved at the output focal plane. A two-dimensional InGaAs focal plane array collects light that has been dispersed in wavelength along the horizontal direction, and in time along the vertical direction. The data is demodulated using a high performance computer-based digital signal processor. This parallel approach greatly enhances (by more than 100x) the speed at which spectrally resolved lock-in data can be acquired.
Abstract:
A method and apparatus for producing with a gas discharge laser an output laser beam comprising output laser light pulses, for delivery as a light source to a utilizing tool is disclosed which may comprise a beam path and a beam homogenize in the beam path. The beam homogenizer may comprise at least one beam image inverter or spatial rotator, which may comprise a spatial coherency cell position shifter. The homogenizer may comprise a delay path which is longer than, but approximately the same delay as the temporal coherence length of the source beam. The homogenizer may comprise a pair of conjoined dove prisms having a partially reflective coating at the conjoined surfaces of each, a right triangle prism comprising a hypotenuse face facing the source beam and fully reflective adjoining side faces or an isosceles triangle prism having a face facing the source beam and fully reflective adjoining side faces or combinations of these, which may serve as a source beam multiple alternating inverted image creating mechanism. The beam path may be part of a bandwidth measuring the bandwidths of an output laser beam comprising output laser light in the range of below 500 femtometers at accuracy's within tens of femtometers. The homogenizer may comprise a rotating diffuser, which may be a ground glass diffuser which may also be etched. The wavemeter may also comprise a collimator in the beam path collimating the diffused light; a confocal etalon creating an output based upon the collimated light entering the confocal etalon; and a detector detecting the output of the confocal etalon and may also comprise a scanning mechanism scanning the angle of incidence of the collimated light entering the confocal etalon which may scan the collimated light across the confocal etalon or scan the etalon across the collimated light, and may comprise an acousto-optical scanner. The confocal etalon may have a free spectral range approximately equal to the E95 width of the beam being measured. The detector may comprise a photomultiplier detecting an intensity pattern of the output of the confocal etalon.
Abstract:
A system for predicting blood constituent values in a patient includes a remote wireless noninvasive spectral device (2) for generating a spectral scan of a body part of the patient. The system also includes a remote invasive device (1) and a central processing device (3). The remote invasive device (1) generates a constituent value for the patient, which the central processing device (3) predicts a blood constituent value of the patient based upon the spectral scan and the constituent value.
Abstract:
According to the present invention there is provided a spectral bio-imaging methods which can be used for automatic and/or semiautomatic spectrally resolved morphometric classification of cells, the method comprising the steps of (a) preparing a sample to be spectrally imaged, the sample including at least a portion of at least one cell; (b) viewing the sample through an optical device, the optical device being optically connected to an imaging spectrometer, the optical device and the imagine spectrometer being for obtaining a spectrum of each pixel of the sample; (c) classifying each of the pixels into classification groups according to the pixels spectra; and (d) analyzing the classification groups and thereby classifying the at least one cell into a cell class.
Abstract:
A handheld device for infrared reflectance measurements of samples (M) for identification of the sample materials is a self-contained portable unit built into a handheld housing (10). The housing (10) includes a window (15) and optics on a bench (100) adjacent the window (15), so that the optics will be aligned with the sample (M) when the device is placed directly against the sample (M). The optics include a broad-band IR light source (110) shining onto an acousto-optic tunable filter (AOTF) (120), which passes narrow-band IR light with a swept frequency; a lens (130) focussing the IR through the window (15) onto the sample (M); and a reflectance detector (140) aligned with the window (15) of the housing (10) to detect reflected light. A computer (202), which may be mounted in the housing (10), compares the detected reflectance spectrum with stored sample data spectra, and identifies the material (M) or the components of the material (M) and their proportions.
Abstract:
A Fourier Transform Raman Spectrometer system includes a folded V laser cavity. A first leg of the folded V laser cavity is defined by a highly reflective end mirror and a dichroic fold mirror and a second leg of the folded V laser cavity is defined by the fold mirror and an output coupler. A solid-state laser gain medium is disposed in the first leg of the folded V laser cavity and is pumped by a pump source aligned with the optical path of the first leg of the laser cavity and radiating through the fold mirror. The fold mirror is highly transmissive at the wavelength of pump radiation from the pump source and highly reflective at the laser output wavelength. An output beam from the laser is passed through a tuneable filter comprising an acousto-optic device and is directed at a sample to be analyzed. Light reflected from the sample is directed to a Raman Spectrometer for analysis.