Abstract:
Eine Spektrometer-Anordnung (10) enthält eine Strahlungsqeulle (11) mit kontinuierlichem Spektrum, einen Vormonochromator (2) zur Erzeugung eines Spektrums mit relativ geringer Lineardispersion aus welchem ein Spektrenausschnitt selektierbar ist, dessen spektrale Bandbreite kleiner oder gleich der Bandbreite des freien Spektralbereiches derjenigen Ordnung im Echelle-Spektrum ist, in der die Mittenwellenlänge des selektierten Spektrenausschnitts mit maximaler Blazeeffektivität messbar ist, ein Echelle-Spektrometer (4) mit Mitteln zur Wellenlängenkalibrierung, einen Eintrittsspalt (21) an dem Vormonochromator (2), eine Zwischenspalt-Anordnung (3) mit einem Zwischenspalt und einen ortsauflösenden Strahlungsempfänger (5) in der Austrittsebene des Spektrometers zur Detektion von Wellenlängen-Spektren. Die Anordnung ist dadurch gekennzeichnet, daβ die Breite des Zwischenspalts (3) gröβer ist, als das durch den Vormonochromator am Ort des Zwischenspaltes entstehende monochromatische Bild des Eintrittspaltes und Mittel zur Kalibrierung des Vormonochromators vorgesehen sind, durch welche die auf den Detektor abgebildete Strahlung der Strahlungsquelle mit kontinuierlichen Spektrum auf eine Referenzposition kalibrierbar ist.
Abstract:
A simple, reliable, easy to use method for calculating bandwidth data of very narrow band laser beams based on bandwidth data obtained with a spectrometer in circumstances where the laser bandwidths are not large compared to the slit function of the spectrometer. The slit function of the spectrometer is determined (20). Spectral data of the laser beam is measured with the spectrometer to produce a measured laser beam spectrum which represents a convolution of the laser beam spectrum and the spectrometer slit function (76). This measured laser spectrum is then mathematically convolved with the slit function of the spectrometer to produce a doubly convolved spectrum. Bandwidth values representing true laser bandwidths are determined from measured laser spectrum and the doubly convolved spectrum. Preferably the true laser bandwidths are calculated by determining the difference between "twice a measured laser bandwidth" and a corresponding "doubly convolved bandwidth." This method provides an excellent estimate of the true laser bandwidth because "twice the measured laser bandwidth" represents two laser bandwidths and two spectrometer slit function bandwidths and the "doubly convolved bandwidth" represents one laser bandwidth and two spectrometer slit function bandwidths. Thus, the difference is a representation of the true laser bandwidth. In a preferred embodiment the bandwidth parameters measured are the full width half-maximum bandwidth and the 95% integral bandwidth.
Abstract:
A method and apparatus for the spectrochemical analysis of a sample in which a solid state array detector (82) is used to detect radiation (62) of spectrochemical interest. The invention involves the use of a shutter (72) adjacent the entrance aperture (70) of a polychromator (74-80) to expose the detector (82) to the radiation (62) for varying lengths of time whereby for short duration exposure times charge accumulation in elements (i.e. pixels) of the detector (82) due to high intensity components of the radiation is limited and for longer exposure times charge accumulation in elements (pixels) of the detector (82) due to feeble intesity components of radiation (62) is increased. This ensures that each reading of the detector (82) includes at least one exposure in which the amount of charge accumulated at each wavelength of interest is neither too little or too great. The problems of feeble radiation components not being accurately measurable and of high intensity radiation components exceeding the charge carrying capacity of elements (pixels) of the detector (82) are thereby able to be avoided. An attenuator (90) may be placed between the radiation source (60) and the detector (82) to permit longer exposure times to be used for very high intensity radiation.
Abstract:
An apparatus and a method for shaping a light spectrum are presented. The apparatus includes a spatial light modulator (140) provided for shaping the spectrum of a primary beam. The spatial light modulator (140) includes an array of cells in which each cell is operable in a first state and a second state. The apparatus also includes a controller (160) configured to change the state of a subset of cells iteratively, based on a stochastic process, to shape the spectrum.
Abstract:
The present disclosure concerns a spectrometer (10) and method for generating a two dimensional spectrum (S). The spectrometer (10) comprises a main grating (3) and cross dispersion element (2). An imaging mirror (4) is arranged for reflecting and focussing dispersed radiation (R3) from the main grating (3) towards an image plane (IP) for imaging the two dimensional spectrum (S) onto an image plane (IP) of the spectrometer (10). A correction lens (6) is arranged for correcting optical aberrations in the imaging of the two dimensional spectrum (S) in the image plane (IP). The imaging mirror (4) and correction lens (6) have a coinciding axis of cylindrical symmetry (AS).
Abstract:
A cryogenically cooled imaging spectrometer that includes a spectrometer housing having a first side and a second side opposite the first side. An entrance slit is on the first side of the spectrometer housing and directs light to a cross-disperser grating. An echelle immersions grating and a catadioptric lens are positioned in the housing to receive the light. A cryogenically cooled detector is located in the housing on the second side of the spectrometer housing. Light from the entrance slit is directed to the cross-disperser grating. The light is directed from the cross-disperser grating to the echelle immersions grating. The light is directed from the echelle immersions grating to the cryogenically cooled detector on the second side of the spectrometer housing.
Abstract:
A method to determine and correct broadband background in complex spectra in a simple and automatized manner includes carrying out a background correction with respect to broadband background before a calibration step. The background correction may involve recording a spectral graph and smoothing the recorded spectral graph, determining all values in the initially recorded graph having a value higher than the value of the smoothed graph and reducing such values to the value of the smoothed graph, and repeating these two steps. The background graph obtained is then subtracted from the initial graph. The smoothing of the graph is carried out by moving average, where each intensity value I at the position x in the spectrum is replaced by an average value. The characteristics of the found peaks can be stored in a file so that the calibration can be used at any time.
Abstract:
A pitch side optical system for use in diode laser spectroscopy consisting of more than one diode laser having select lasing frequencies with each diode laser being coupled to an end of a distinct input optical fiber. The pitch side optical system further consists of a multiplexer optically coupled to the other end of less than all of the input optical fibers with the multiplexer outputting multiplexed laser light to a pitch side optical fiber. The pitch side optical system further consists of a coupler optically coupled to the far end of the pitch side optical fiber and the far end of an unmultiplexed input optical fiber with the coupler combining the multiplexed laser light and the unmultiplexed laser light and outputting the combined light to a transmission optical fiber. Typically, the coupler is located near the combustion process. The pitch side optical system further consists of a pitch optic coupled to the transmission optical fiber. Typically, all optical fibers used in the pitch side optical system are single mode optical fibers.
Abstract:
A method to determine and correct broadband background in complex spectra in a simple and automatized manner includes carrying out a background correction with respect to broadband background before a calibration step. The background correction may involve recording a spectral graph and smoothing the recorded spectral graph, determining all values in the initially recorded graph having a value higher than the value of the smoothed graph and reducing such values to the value of the smoothed graph, and repeating these two steps. The background graph obtained is then subtracted from the initial graph. The smoothing of the graph is carried out by moving average, where each intensity value I at the position x in the spectrum is replaced by an average value. The characteristics of the found peaks can be stored in a file so that the calibration can be used at any time.
Abstract:
A sensing apparatus consisting of more than one diode laser having select lasing frequencies, a multiplexer optically coupled to the outputs of the diode lasers with the multiplexer being further optically coupled to a pitch side optical fiber. Multiplexed laser light is transmitted through the pitch side optical fiber to a pitch optic operatively associated with a process chamber which may be a combustion chamber or the boiler of a coal or gas fired power plant. The pitch optic is oriented to project multiplexed laser output through the process chamber. Also operatively oriented with the process chamber is a catch optic in optical communication with the pitch optic to receive the multiplexed laser output projected through the process chamber. The catch optic is optically coupled to an optical fiber which transmits the multiplexed laser output to a demultiplexer. The demultiplexer demultiplexes the laser light and optically couples the select lasing frequencies of light to a detector with the detector being sensitive to one of the select lasing frequencies.