Abstract:
본 발명은, 필터 장치, 그 하류에 배치된 검출기 장치, 및 검출기 장치에 연결된 평가 디바이스를 갖는 센서에 관한 것으로, 필터 장치는 적어도 하나의 제 1 필터, 즉, 제 1 소정의 대역 (서스펙트 대역 (SB)) 의 통과를 허용하는 대역 통과 필터로서 구성된 서스펙트 필터, 및 적어도 하나의 제 2 필터, 즉, 제 2 소정의 대역(들) (기준 대역(들) (RB1 및 RB2)) 의 통과를 허용하는 대역 통과 필터로서 구성된 기준 필터(들) 를 갖고, 검출기 장치는 필터들 중 적어도 하나와 관련된 적어도 하나의 검출기를 갖는다. 기준 필터들의 대역 통과들은 서스펙트 필터의 대역 통과 위에 그리고 아래에 분포된다. 이 센서는 유리하게 IR 대역 내에 이용될 수 있고, CO 를 검출하는데 유리하게 이용될 수 있다.
Abstract:
샘플의 임계 각도에 배향된 분광 장치는 샘플의 분광 특성을 검지하는 것으로 기재되어 있는데, 여기서 분광 장치는 샘플의 임계 각도에서 또는 그 부근에서의 입사 각도의 위치에서 샘플에 도입된 전자기 방사선으로 샘플을 여기시키도록 구성된 전자기 방사선 소스와, 상기 전자기 방사선 소스 및 샘플과 통신하고 상기 전자기 방사선을 내부적으로 반사하도록 구성된 고굴절율을 갖는 투과 크리스탈과, 상기 투과 크리스탈과 샘플 사이의 임계 각도 또는 그 근처의 입사 각도의 위치에서 샘플에 전자기 방사선을 도입하도록 구성된 반사기와, 상기 샘플로부터의 전자기 방사선을 검지하기 위한 검지기로 구성되어 있다. 또한, 본 발명에는 주변-임계 반사 분광 장치가 통합되어 있는 키트, 시스템 및 방법이 제공된다.
Abstract:
A system, wearable device, and method include a light emitter configured to emit light at a first wavelength of between approximately 900 and 1000 nanometers and at a second wavelength of approximately 1350 nanometers, a first light detector spaced at a first distance from the light emitter, and a second light detector spaced at a second distance from the light emitter, the second distance approximately twice the first distance. At least one of hydration and glycogen of muscle tissue is determinable based on a relationship between backscatter light from the muscle tissue as detected by the second light detector and backscatter light from non-muscle tissue as detected by the first light detector.
Abstract:
An infrared device comprises a substrate (1), and arranged on or in the substrate (1) a configuration (3) for one of selectively emitting and selectively absorbing infrared radiation of a band, the configuration (3) comprising a pattern made from an electrically conducting material on a first level (L1), an electrically conducting film (33) on a second level (L2), and a dielectric layer (24) between the pattern and the film (33). One or more of a heater (4) for heating the configuration (3), and a thermal sensor (5) arranged for sensing the selective infrared radiation of the band absorbed by the configuration (3) is arranged on or in the substrate (1).
Abstract:
This invention concerns the field of sample identification, in particular a method and apparatuses for identifying or discriminating biological species from non-biological species, both as individual particles and as components of a composition, by pump- probe fluorescence spectroscopy for time-resolved detection or imaging. The method uses the finding that the UV-induced fluorescence of biological molecules is varied, in particular is depleted, by the addition of visible radiation, whereas this does not occur with non-biological organic molecules. The invention discriminates the fluorescence signals of bio and non-bio particles or species using a differential approach, i.e. the comparison of the total fluorescence recorded with and without additional visible radiation. This allows to discriminate biological particles comprising aromatic amino- acids (AA), like peptides, proteins, bacteria, viruses, pollens, spores, etc., from non- biological particles, like aromatic (AH) or polyaromatic hydrocarbons (PAH), carbonaceous aerosols, soot, etc.
Abstract:
The present invention concerns a method and system for gas concentration measurement of gas or gas mixtures dissolved in liquids. A gas or gas mixture dissolved in a liquid sample is extracted from the liquid sample using an extraction system (2) and conducted into a measurement chamber (4). Then a measurement signal is generated by means of a radiant source (3) and the measurement signal is directed to a measurement object (6) in a measurement chamber (4) containing the gas or gas mixture to be measured. The measurement signal is filtered using at least two wavelengths (λ-ι, λ2), whereupon the filtering is preferably implemented by means of an electrically tunable, short resonator Fabry-Perot interferometer (7). Then the filtered measurement signals are detected by means of a detector (8).
Abstract:
The invention relates to a sensor having a filter arrangement, downstream of which there is arranged a detector arrangement, and an evaluating device which is connected to the detector arrangement, the filter arrangement has at least a first filter, the suspect filter, which is configured as a band pass filter allowing the passage of a first predetermined band, the suspect band (58), at least one second filter, the reference filter(s), which is configured as a band pass filter allowing the passage of a second predetermined band(s), the reference band(s) (RBl and RB2), and where the detector arrangement has at least one detector associated with at least one of the filters. The band passes reference filters are distributed above and below the band pass of the suspect filter. The sensor with advantage could be utilized within the IR band, and could advantageously be used to detect CO.
Abstract:
Spectroscopy apparatuses oriented to the critical angle of the sample are described that detecting the spectral characteristics of a sample wherein the apparatus consists of an electromagnetic radiation source adapted to excite a sample with electromagnetic radiation introduced to the sample at a location at an angle of incidence at or near a critical angle of the sample; a transmitting crystal in communication with the electromagnetic radiation source and the sample, the transmitting crystal having a high refractive index adapted to reflect the electromagnetic radiation internally; a reflector adapted to introduce the electromagnetic radiation to the sample at or near an angle of incidence near the critical angle between the transmitting crystal and sample; and a detector for detecting the electromagnetic radiation from the sample. Also, provided herein are methods, systems, and kits incorporating the peri-critical reflection spectroscopy apparatus.
Abstract:
There is described a system and method for the in vivo determination of lactate levels in blood using Near-Infrared Spectroscopy (NIRS)and/or Near-infrared Raman Spectroscopy (NIR-RAMAN). The method teaches measuring lactate in vivo comprising: optically coupling a body part with a light source and a light detector the body part having tissues comprising blood vessels; injecting near-infrared (NIR) light at one or a plurality of wavelengths in the body part; detecting, as a function of blood volume variations in the body part, light exiting the body part at at least the plurality of wavelengths to generate an optical signal; and processing the optical signal as a function of the blood volume variations to obtain a lactate level in blood.