Abstract:
A microparticle measuring apparatus for highly accurately detecting the position of a microparticle flowing through a flow channel includes a light irradiation unit for irradiating a microparticle flowing through a flow channel with light, and a scattered light detection unit for detecting scattered light from the microparticle, including an objective lens for collecting light from the microparticle, a light splitting element for dividing the scattered light from the light collected by the objective lens, into first and second scattered light, a first scattered light detector for receiving an S-polarized light component, and an astigmatic element disposed between the light splitting element and the first scattered light detector, and making the first scattered light astigmatic. A relationship between a length L from a rear principal point of the objective lens to a front principal point of the astigmatic element, and a focal length f of the astigmatic element satisfies the following formula I. 1.5 f ≤ L ≤ 2.5 f
Abstract:
Vorrichtung zum Erfassen und Erkennen von Objekten (5) eines Materialstromes, umfassend mindestens eine Kamera (1), welche Bilddaten der Objekte an eine Auswerteeinrichtung zwecks Ermittlung von Eigenschaften der Objekte (5) des Materialstromes wie Materialzusammensetzung, Farbe, Größe oder dergleichen übermittelt, sowie eine beliebige Anzahl vorzugsweise reihenförmig angeordneter Leucht-Dioden (4), welche einer Beleuchtung des Materialstromes dienen, wobei der Materialstrom mittels eines Förderelementes (3) transportiert und an einem Erfassungsbereich (12) der Kamera(s) vorbeigeführt wird und wobei zwischen den Leucht-Dioden (4) und dem vorzugsweise am Förderelement (3) lokalisierten Erfassungsbereich (12) eine optische Einrichtung (6) angeordnet ist, welche eine Diffusion des von den Leucht-Dioden (4) emittierten Lichtes bewirkt. Um eine möglichst gleichmäßige Beleuchtung des am Förderelement (3) lokalisierten Kamera-Erfassungsbereichs (12) zu ermöglichen und dadurch Fehldetektionen zu vermindern, ist es erfindungsgemäß vorgesehen, dass die optische Einrichtung (6) mindestens einen auf seinen Innenseiten (14c) verspiegelten Reflexionskanal (14) umfasst.
Abstract:
Ring lamps are used in the form of an object lighting system for providing a homogenous, shadowless and intensive lighting, for example, at cameras and microscopes. Already existing ring lamps provided with inwardly radiating light sources are used in the form of ring-shaped fluorescent lamps and ring-shaped light emitting diodes. Nevertheless, light is not focused on an accurately restricted volume. The inventive ring lamp (RL) produces a light disc (LS) accurately three-dimensionally restricted by the fact that it focuses the light (LL) emitted by the light source (LQ) by means of a cylindrical Fresnel lens (FL) having the same length exactly in a direction of the radial plane (RE) thereof. An annular aperture diaphragm (AB) positioned on a beam path supports said restriction. The light source (LQ) can be surrounded by a pressure resistant housing (DG) in such a way that it is suitable for the underwater application when it is used with a particle-detecting system, wherein said housing simultaneously makes it possible to avoid the light diffusion in the light disc (LS) environment. The light disc (LS) thickness depends only on the length of the radiating surface (AF) of the Fresnel lens (FL) and can be very small for accurately representing particles, i.e. of the order of the thickness of a greatest of expected particles.
Abstract:
Un cellule capillaire d'écoulement (12) comprend un axe optique défini, successivement, par (a) une première ouverture (d'admission) (14); (b) une première lentille (26); (c) un tube capillaire (16) dont l'axe long est centré à travers l'axe (26); (c) un tube capillaire (16) dont l'axe long est centré à travers l'axe optique; et (d) une deuxième lentille (28). La première lentille (26) focalise le rayonnement électromagnétique admis par l'ouverture d'admission (14) dans le diamètre intérieur du tube capillaire (16), maximisant le signal généré par l'analyte dans le tube capillaire (16). La deuxième lentille (28) focalise le rayonnement électromagnétique qui a traversé le tube capillaire (16).
Abstract:
본 실시예에 의한 라만 분광 신호 처리 방법은 광대역 여기광을 타겟 샘플에 조사하여 제1 분해능의 라만 분광을 획득하는 단계와, 제1 분해능의 라만 분광에 상응하는 라만 분광 신호를 연산하는 단계와, 라만 광 신호를 디컨벌루션 연산하여 제1 분해능 보다 높은 제2 분해능의 라만 분광에 상응하는 신호를 연산하는 단계를 포함한다.