Method for detecting and managing nematode population
    61.
    发明申请
    Method for detecting and managing nematode population 有权
    检测和管理线虫种群的方法

    公开(公告)号:US20060006335A1

    公开(公告)日:2006-01-12

    申请号:US11156675

    申请日:2005-06-21

    Abstract: The present invention is directed to methods and apparatus for pest management using remote sensing technology. One aspect of the present invention relates to a method for detecting plant-parasitic nematodes using hyperspectral reflectance data. Another aspect of the present invention relates to a device for determining the population of reniform nematode in a target. The further aspect of the present invention relates to a method for managing nematode population with variable rate applications of nematicides.

    Abstract translation: 本发明涉及使用遥感技术的病虫害防治方法和装置。 本发明的一个方面涉及使用高光谱反射率数据检测植物寄生线虫的方法。 本发明的另一方面涉及一种用于确定靶中的线状线虫种群的装置。 本发明的另一方面涉及用杀线虫剂的可变速率应用来管理线虫种群的方法。

    Imaging method and apparatus for the non-destructie analysisof paintings and monuments
    62.
    发明申请
    Imaging method and apparatus for the non-destructie analysisof paintings and monuments 有权
    绘画和纪念碑的非破坏性分析的成像方法和装置

    公开(公告)号:US20030117620A1

    公开(公告)日:2003-06-26

    申请号:US10203587

    申请日:2002-10-30

    Abstract: This invention refers to an imaging method and apparatus capable of performing non-destructive, in situ analysis of art-objects. The invention relays on the comparison of diffuse reflectance and/or fluorescence spectra (intensity vs. wavelength), of painting material models of known composition, with the intensities emitted and captured at the same wavelengths and for any spatial point of the art-object of unknown composition. This composition, performed for any spatial point of the area of interest, improves notably the diagnostic information and enables the analysis of heterogeneous art-objects.

    Abstract translation: 本发明涉及能够对艺术品进行非破坏性原位分析的成像方法和装置。 本发明将已知组合物的涂料材料模型的漫反射和/或荧光光谱(强度与波长)的比较与在相同波长处发射和捕获的强度以及艺术对象的任何空间点进行比较 未知的组成。 对于感兴趣区域的任何空间点执行的这种组合,显着改善了诊断信息,并且能够分析异质的艺术品。

    DATA PROCESSING APPARATUS, DATA DISPLAY SYSTEM INCLUDING THE SAME, SAMPLE INFORMATION OBTAINING SYSTEM INCLUDING THE SAME, DATA PROCESSING METHOD, PROGRAM, AND STORAGE MEDIUM
    64.
    发明公开
    DATA PROCESSING APPARATUS, DATA DISPLAY SYSTEM INCLUDING THE SAME, SAMPLE INFORMATION OBTAINING SYSTEM INCLUDING THE SAME, DATA PROCESSING METHOD, PROGRAM, AND STORAGE MEDIUM 审中-公开
    数据处理设备,以便数据显示系统,样本信息收集系统的数据处理程序和存储介质

    公开(公告)号:EP3167275A1

    公开(公告)日:2017-05-17

    申请号:EP15819263.3

    申请日:2015-06-30

    Inventor: TANJI, Koichi

    Abstract: A data processing apparatus that processes a spectral data item which stores, for each of a plurality of spectral components, an intensity value, includes a spectral component selecting unit and a classifier generating unit. The spectral component selecting unit is configured to select, based on a Mahalanobis distance between groups each composed of a plurality of spectral data items or a spectral shape difference between groups each composed of a plurality of spectral data items, a plurality of machine-learning spectral components from among the plurality of spectral components of the plurality of spectral data items. The classifier generating unit is configured to perform machine learning by using the plurality of machine-learning spectral components selected by the spectral component selecting unit and generate a classifier that classifies a spectral data item.

    Abstract translation: 一种数据处理装置中的处理做了光谱数据项哪些商店,对于每个光谱分量的上强度值的多个,包括频谱分量选择单元和一个分级器生成单元。 频谱分量选择单元被配置来选择,基于每个频谱数据项的多个或一组之间的光谱形状差异每个光谱数据项的复数,机器学习频谱的多个组成构成组之间的马哈拉诺比斯距离 从光谱数据项的多个光谱分量的多元性的部件之间。 分类器生成单元被配置为通过使用由频谱分量选择单元所选择的机器学习频谱分量的多个以进行机器学习,并生成一个分类器做分类的光谱数据项。

    METHOD FOR THE CHARACTERISATION AND CLASSIFICATION OF KIDNEY STONES
    69.
    发明公开
    METHOD FOR THE CHARACTERISATION AND CLASSIFICATION OF KIDNEY STONES 审中-公开
    方法的特点和分类的肾结石

    公开(公告)号:EP2696191A1

    公开(公告)日:2014-02-12

    申请号:EP12767459.6

    申请日:2012-04-10

    Abstract: Method for the characterisation and classification of kidney stones, comprised the following stages:
    (a) Taking a series of kidney stone samples and cutting them to observe their interior, obtaining the flattest possible surface,
    (b) The technique of Hyperspectral Imaging (HSI) is applied to obtain the spectra of previously cut kidney stones, selecting a series of Regions of Interest (ROI) and analysing the image using Principal Component Analysis (PCA)
    (c) The main species are identified using Factor Analysis (FA)
    (d) Outliers are identified using Principal Component Analysis (PCA)
    (e) The different types of kidney stones are analysed using Principal Component Analysis (PCA)
    (f) The data obtained from the Principal Component Analysis (PCA) are subject to Artificial Neural Networks (ANN) for classification.

    Abstract translation: 肾结石的表征和分类方法包括以下几个阶段:(a)取一系列肾结石样本并切割它们观察它们的内部,获得最平坦的表面;(b)高光谱成像技术(HSI) 用于获得先前切开的肾结石的光谱,选择一系列感兴趣区域(ROI)并使用主成分分析(PCA)分析图像(c)使用因子分析(FA)确定主要种类(d) (e)使用主成分分析(PCA)分析不同类型的肾结石(f)从主成分分析(PCA)获得的数据受到人工神经网络(人工神经网络 )进行分类。

Patent Agency Ranking