Abstract:
A cathode (5) for emitting photoelectrons or secondary electrons comprises a nickel electrode substrate (5c) with an aluminum layer (5b) deposited on it; an intermediate layer (5a) consisting of carbon nanotubes formed on the aluminum layer; and an alkaline metal layer (5d) formed on the intermediate layer (5a) and composed, for example, of particles of an alkali antimony compound that either emits photoelectrons in response to incident light or emits secondary electrons in response to incident electrons. The decrease in defect density of the particles reduces the probability of recombination of electron and hole remarkably, thus increasing quantum efficiency.
Abstract:
Cathodoluminescent field emission display devices feature phosphor biasing, amplification material layers for secondary electron emissions, oxide secondary emission enhancement layers, and ion barrier layers of silicon nitride, to provide high-efficiency, high-brightness field emission displays with improved operating characteristics and durability. The amplification materials include copper-barium, copper-beryllium, gold-barium, gold-calcium, silver-magnesium and tungsten-barium-gold, and other high amplification factor materials fashioned to produce high-level secondary electron emissions within a field emission display device. For enhanced secondary electron emissions, an amplification material layer can be coated with a near mono-molecular film consisting essentially of an oxide of barium, beryllium, calcium, magnesium or strontium. Use of a high amplification factor film as a phosphor biasing electrode, and variability of the phosphor biasing potential to achieve brightness or gray scale control are further described in the disclosure.
Abstract:
A cathodoluminescent field emission display device features an enhancement layer disposed over at least selected portions of an outer surface of an extraction grid of the device. The enhancement layer provides enhanced secondary electron emissions. The enhancement layer is preferably near mono-molecular film of an oxide of barium, beryllium, calcium, magnesium, strontium or aluminum.
Abstract:
A photomultiplier is constituted by a photocathode and an electron multiplier having a typical structure in which a dynode unit having a plurality of dynode plates stacked in an incident direction of photoelectrons, an anode plate, and an inverting dynode plate are sequentially stacked. Through holes for injecting a metal vapor are formed in the inverting dynode plate to form secondary electron emitting layers on the surfaces of dynodes supported by the dynode plates, and the photocathode. With this structure, the secondary electron emitting layers are uniformly formed on the surfaces of the dynodes. Therefore, variations in output signals obtained from anodes can be reduced regardless of the positions of the photocathode.
Abstract:
Before being introduced within the intensifier, the grid which is nearest the anode is coated with a layer of electrically conductive material having the property of oxidizing alkali metals. This has the effect of elininating any parasitic illumination of the viewing screen caused by alkali metals unintentionally deposited on the grid at the time of formation of the photocathode.
Abstract:
An improved microchannel plate is shown fabricated from tubes formed from at least two types of cladding glass and a core glass, including a first cladding of partial acid resistant glass and a second, super cladding of high acid resistant glass. The first cladding may surround a hollow core that forms a passage or it may surround a core of low acid resistant glass which is removed by an acid bath to form the passage. The second cladding surrounds the first, while the opening of the passage surrounded by the first cladding is tapered by an acid etch that does not affect the second cladding. Thus, the ratio of the open area of the passages to their end surface area is controlled only by the removal of the first cladding.
Abstract:
Disclosed are the processes of how to fabricate the microchannel plate for use in electron image intensifying by using a number of glass pipes, each consisting of glass material containing oxides of alkaline earth metals, i.e., magnesium oxide (MgO) or a mixture of magnesium oxide (MgO) and calcium oxide (CaO).
Abstract:
A method for producing a multichannel plate containing metal dynodes and having a plurality of generally parallel channels for use in structures for amplifying or converting optical images or other two-dimensional signal patterns by secondary electron multiplication, which method includes:producing a negative mold of the plate by:(i) providing a body having at least the thickness of the plate to be produced and made of an electrically insulating material whose ability to be removed from the body is altered by exposure to a selected radiation;(ii) irradiating the body with the selected radiation in a pattern corresponding to the plate to be produced and in a manner to render portions of the body having the form of a grid surrounding the channels more easily removable than the remaining portions of the body; and(iii) removing the more easily removable portions of the body to leave columnar structures corresponding to the channels in the plate;depositing metal layers and intermediate layers alternatingly in the openings in the negative mold or in a secondary negative mold produced therefrom, the metal layers being deposited electrolytically and forming dynodes which are spaced apart in the direction of the channels; andremoving the negative mold from the deposited layers.
Abstract:
A method for producing a multichannel plate containing a plurality of generally parallel channels for use in structures for amplifying or converting optical images or other two-dimensional signal patterns by secondary electron multiplication, which method includes:producing a positive mold of the plate, by the steps of: (i) providing a body having the external shape of the plate to be produced and made of a material whose ability to be removed from the body is altered by exposure to a selected radiation; (ii) irradiating the body with the selected radiation in a pattern corresponding to the plate to be produced and in a manner to render the portions of the body corresponding to the channels more easily removable than the remaining portions of the body; and (iii) removing the more easily removable portions of the body;forming a metal negative mold, by the steps of: (i) attaching the positive mold to a metal electrode; (ii) electrolytically depositing metal on the electrode and in the openings created in the positive mold by said step of removing more easily removable portions; and (iii) removing the positive mold from the deposited metal; andforming the multichannel plate from the negative mold.
Abstract:
The invention includes an electron tube such as an image intensifier which utilizes a channel-type electron multiplier. The multipler is made of a perforated glass plate made in a manner such that secondary emission may be produced at the interior surfaces of the holes through the plate. Primary electrons are introduced to the holes at one end and a much larger emission emanates from the other end. Conductive layers on each side of the plate have holes in registration with the plate holes. The conductive layers are maintained at potentials to accelerate electron flow through the holes. In accordance with the present invention, a third conductive layer is provided at the output side. When the third conductive layer is maintained negative, resolution is improved.