Abstract:
An ion detection device has a strip of carbon-based nanomaterial (CNM) film and a chamber enclosing the CNM film. A low bias voltage is applied at the ends of the CNM film strip, and ions present in the chamber are detected by a change in the magnitude of current flowing through the CNM film under the bias. Also provided are methods for fabricating the device, methods for measuring pressure of a gas, and methods for monitoring or quantifying an ionizing radiation using the device.
Abstract:
An ionization gauge to measure pressure, while controlling the location of deposits resulting from sputtering when operating at high pressure, includes at least one electron source that emits electrons, and an anode that defines an ionization volume. The ionization gauge also includes a collector electrode that collects ions formed by collisions between the electrons and gas molecules and atoms in the ionization volume, to provide a gas pressure output. The electron source can be positioned at an end of the ionization volume, such that the exposure of the electron source to atom flux sputtered off the collector electrode and envelope surface is minimized. Alternatively, the ionization gauge can include a first shade outside of the ionization volume, the first shade being located between the electron source and the collector electrode, and, optionally, a second shade between the envelope and the electron source, such that atoms sputtered off the envelope are inhibited from depositing on the electron source.
Abstract:
Aspects of the present disclosure include a computer-implemented method for identifying an operating temperature of an integrated circuit (IC), the method including using a computing device for: applying a test voltage to a test circuit embedded within the IC, the test circuit including a phase shift memory (PSM) element therein, wherein the PSM element crystallizes at a crystallization temperature from an amorphous phase having a first electrical resistance into a crystalline phase having a second electrical resistance, the second electrical resistance being less than the first electrical resistance; and identifying the IC as having operated above the crystallization temperature in response to a resistance of the test circuit at the test voltage being outside of the target operating range.
Abstract:
An ionization gauge that measures pressure has an electron source that emits electrons, and an anode that defines an ionization space. The gauge also includes a collector electrode to collect ions formed by an impact between the electrons and a gas and to measure pressure based on the collected ions. The electron source is dynamically varied in emission current between a plurality of emission levels dependent on pressure and a second parameter other than pressure. The ionization gauge may also vary various operating parameters of the gauge components according to parameters stored in a non-volatile memory and selected by a user.
Abstract:
An ion detection device has a strip of carbon-based nanomaterial (CNM) film and a chamber enclosing the CNM film. A low bias voltage is applied at the ends of the CNM film strip, and ions present in the chamber are detected by a change in the magnitude of current flowing through the CNM film under the bias. Also provided are methods for fabricating the device, methods for measuring pressure of a gas, and methods for monitoring or quantifying an ionizing radiation using the device.
Abstract:
An ionization gauge to measure pressure and to reduce sputtering yields includes at least one electron source that generates electrons. The ionization gauge also includes a collector electrode that collects ions formed by the collisions between the electrons and gas molecules. The ionization gauge also includes an anode. An anode bias voltage relative to a bias voltage of a collector electrode is configured to switch at a predetermined pressure to decrease a yield of sputtering collisions.
Abstract:
A system for measuring gas density in a vacuum includes a gauge, a housing for containing the gauge, and a magnet secured to an exterior surface of the housing. The magnet is a flexible magnetic strips, and positioned around the exterior surface of the housing. The gauge includes grid insulator posts extending longitudinally along a tubular section of the housing, and the magnet is secured to the exterior surface of the housing adjacent to the grid insulator posts, and oriented transversely to the grid insulator posts. The magnet is a flexible magnetic strip, and a clamp secures the magnet to the exterior surface of the housing.