Abstract:
Electrical components such as integrated circuits and other components may be mounted on a substrate such as a printed circuit substrate. A molded plastic cap may cover the components and a portion of the printed circuit substrate to form a packaged electrical device. Metal structures such as springs, posts, and other metal members may be insert molded within the plastic cap. A metal layer on the surface of the cap may be patterned to from electromagnetic shielding, signal paths, contact pads, sensor electrodes, antennas, and other structures. Multiple substrates each with a respective set of mounted electrical components may be joined using a flexible printed circuit. The flexible printed circuit may be covered with a rigid cap portion or an elastomeric material or may be left uncovered.
Abstract:
An electronic component housing package and the like capable of reducing time of infrared heating operation are provided. An electronic component housing package includes an insulating substrate including a plurality of insulating layers stacked on top of each other, an upper surface of the insulating substrate being provided with an electronic component mounting section. The plurality of insulating layers each containing a first metal oxide as a major constituent. The insulating substrate further includes a first metal layer in frame-like form disposed on an upper surface of an uppermost one of the plurality of insulating layers. The first metal layer contains a second metal oxide which is higher in infrared absorptivity than the first metal oxide.
Abstract:
A transparency including a conductive mesh is disclosed. The conductive mesh is formed by a plurality of inkjet printed electrically conductive lines on a polymer film or a glass, polyacrylate, polycarbonate, or polyurethane substrate, wherein at least one inkjet printed electrically conductive line intersects at least one other inkjet printed electrically conductive line. A flying vehicle including a transparency including a conductive mesh is also disclosed. Additionally, a method of preparing a transparency by laminating a polymer film and a substrate together, wherein a conductive mesh is formed on the polymer film by a plurality of inkjet printed electrically conductive lines, is also disclosed.
Abstract:
A microelectronic structure and a method for fabricating the microelectronic structure provide a plurality of voids interposed between a plurality of conductor layers. The plurality of voids is also located between a liner layer and an inter-level dielectric layer. The voids provide for enhanced electrical performance of the microelectronic structure.
Abstract:
The present invention relates to an electromagnetically-countered display system including at least one wave source and at least one counter unit, where such a wave source irradiates harmful electromagnetic waves and the counter unit emits counter electromagnetic waves for countering the harmful waves therewith. More particularly, the present invention relates to various counter units for the electromagnetically-countered display system and to various mechanisms to counter the harmful waves with the counter units, e.g., by matching configurations of the counter units with those of the wave sources, by matching wavefronts of the harmful waves with those the counter waves, and so on. The present invention also relates to various methods of countering the harmful waves with such counter waves by source and/or wave matchings, various methods of providing the counter units for emitting the counter waves defining desired wave characteristics, and the like. The present invention further relates to various processes for providing the electromagnetically-countered display systems and their counter units. The present invention further relates to various electric and magnetic shields employed either alone or in conjunction with the counter units for minimizing irradiation of the harmful waves from the shaving system.
Abstract:
A microelectronic structure and a method for fabricating the microelectronic structure provide a plurality of voids interposed between a plurality of conductor layers. The plurality of voids is also located between a liner layer and an inter-level dielectric layer. The voids provide for enhanced electrical performance of the microelectronic structure.
Abstract:
A magnetic stand for a tablet device is disclosed. The magnetic stand is configured to rigidly hold a portion of the tablet device in place and to shield the magnetic field from adversely affecting nearby devices susceptible to strong magnetic fields. The shielding portion of the magnetic stand allows for significant increases in magnetic field strength when compared to similarly configured, unshielded products.
Abstract:
A transparency including a conductive mesh is disclosed. The conductive mesh is formed by a plurality of inkjet printed electrically conductive lines on a polymer film or a glass, polyacrylate, polycarbonate, or polyurethane substrate, wherein at least one inkjet printed electrically conductive line intersects at least one other inkjet printed electrically conductive line. A flying vehicle including a transparency including a conductive mesh is also disclosed. Additionally, a method of preparing a transparency by laminating a polymer film and a substrate together, wherein a conductive mesh is formed on the polymer film by a plurality of inkjet printed electrically conductive lines, is also disclosed.
Abstract:
An electromagnetically-countered display system includes at least one wave source and at least one counter unit. The wave source irradiates harmful electromagnetic waves and the counter unit emits counter electromagnetic waves for countering the harmful waves therewith. Examples of the various counter units for the electromagnetically-countered display system and various mechanisms to counter the harmful waves with the counter units include by matching configurations of the counter units with those of the wave sources, and by matching wavefronts of the harmful waves with those the counter waves. Various methods of countering the harmful waves with such counter waves include by source and/or wave matching. Various methods of providing the counter units for emitting the counter waves defining desired wave characteristics. Various electric and magnetic shields can be employed either alone or in conjunction with the counter units for minimizing irradiation of the harmful waves from the display system.
Abstract:
The present invention provides a multilayer rigid flexible printed circuit board including: a flexible region including a flexible film having a circuit pattern formed on one or both surfaces thereof and a laser blocking layer formed on the circuit pattern; and a rigid region formed adjacent to the flexible region and including a plurality of pattern layers on one or both surfaces of extended portions extended to both sides of the flexible film of the flexible region, and a method for manufacturing the same.