Abstract:
An optical apparatus can include an optical port array having an M×N array of fiber collimator ports. The array of ports is configured such that there is a gap within each column of ports located between two rows of ports. The gap is wide enough to permit a hitless beam switching trajectory to pass between the two rows of ports from one side of the array of ports to an opposite side.
Abstract:
Effects of diffraction of a spectral beam from an edge of the micromirrors are reduced in order to optimize the passband in a wavelength selective switch. The effects of diffraction on the pass band may be reduced by using rotation of the micromirror about both the attenuation axis and the switching axis to achieve the desired level of attenuation. Peak coupling can be attained by dithering the micromirror about a dither axis that is tangent to a contour of constant attenuation using simultaneous rotation about the switching and attenuation axes. A power level of a spectral channel may be attenuated by rotating the channel micromirror with respect to an effective attenuation axis that is non-orthogonal to the dither axis through a combination of rotations about the switching axis and the attenuation axis.
Abstract:
Methods for adjusting dither amplitude for MEMS mirrors in optical switches and optical switches employing such a method are disclosed. A dither amplitude of one or more MEMS mirrors may be adjusted in an optical switch having an input port, and an array of one or more MEMS mirrors that can be selectively optically coupled to one or more of optical input/output (I/O) ports. Digital-to-analog (DAC) settings for positioning mirrors are used to determine a dither amplitude for one of the MEMS mirrors positioned to couple optical signals to an output port at a position x. The servo control assembly includes memory containing digital-to-analog converter (DAC) settings for positioning each mirror in an open control loop as a function of a port position x. The servo control assembly is programmed to adjust dither amplitude of one or more of the MEMS mirrors using the stored DAC settings.
Abstract:
A method and apparatus for optical spectral power monitoring using a time-division-multiplexed detection scheme. The apparatus uses a wavelength-dispersing means (120) such as a diffraction grating to separate an optical signal into multiple spectral channels, and an array of beam-manipulating elements (140) positioned to correspond with the spectral channels. The beam-manipulating elements are individually controllable so as to direct the spectral channels into an optical detector (150) in a time-division-multiplexed sequence. The apparatus may further employ a polarization diversity scheme for polarization-insensitive operation. This enhances the spectral resolution of the apparatus while providing improved accuracy in spectral power detection. Spectral power monitors constructed according to the present disclosure are well-suited for WDM optical networking applications.
Abstract:
This invention provides a novel wavelength-separating-routing (WSR) apparatus that uses a diffraction grating (101) to separate a multi-wavelength optical signal by wavelength into multiple spectral channels, which are than focused onto an array of corresponding channel micromirrors (220). The channel micromirrors are individually controllable and continuously pivotable to reflect the spectral channels into multiple output ports. As such, the inventive WSR apparatus is capable of routing the spectral channels on a channel-by-channel basis and coupling any spectral channel into any one of the output ports. The WSR apparatus of the present invention may be further equipped with servo-control and spectral power-management capabilities, thereby maintaining the coupling efficiencies of the spectral channels into the output ports at desired values. The WSR apparatus of the present invention can be used to construct a novel class of dynamically reconfigurable optical add-drop multiplexers (OADMs) for wavelength division multiplexing (WDM) optical networking applications.