Abstract:
Compositions and methods are provided for removing viral contaminants from a chemically defined cell culture medium by using microporous membranes having a coating with acomposition resistant to or exhibiting reduced fouling by one or more components in a chemically defined cell culture medium. The coating comprises a copolymer formed from monomer solutions comprising diacetone acrylamide (DACm) and poly(ethylene glycol) diacrylate (PEGDA).
Abstract:
The present invention provides novel and improved protein purification processes which incorporate certain types of carbonaceous materials and result in effective and selective removal, of protein, fragments without adversely affecting the yield of the desired protein product.
Abstract:
The invention relates to a liquid sample preparation device such as a disposable, collapsible, flexible polymeric bag containing an adsorptive curtain of a functionalized shaped polymeric fiber bed for the direct capture of biomolecules from liquid samples. The functionalized shaped polymeric fiber bed includes fibrillated, ridged or winged-shaped fiber structures that significantly increases the surface area of the fiber resulting in enhanced separation, retention and/or purification of liquid samples containing biomolecules of interest as the liquid samples contact the adsorptive curtain of functionalized shaped fibers. Liquid samples include unclarified liquid feeds or other liquids containing one or more biomolecules of interest, including, but not limited to vaccines, recombinant proteins, cells, stem cells, monoclonal antibodies (mAbs), proteins, antibody, peptides, oligopeptides, nucleic acids, oligonucleotides, RNA, DNA, oligosaccharides and polysaccharides.
Abstract:
A disposable container, such as a deformable bag, for a fluid, having one or more inlets and one or more outlets and an impeller assembly within the container to cause mixing, dispersing, homogenizing and/or circulation of one or more ingredients contained or added to the container. The impeller assembly has a protective hood surrounding at least a portion of the moveable blades or vanes of the impeller assembly and being above at least a portion of the blades or vanes. The hood surrounds the blades or vanes and arcs over the height of the blades or vanes. The hood is shaped in a dome shape or semi-spherical shape that is around and above the impeller blades and acts as a protector for the container surface against the impeller assembly both during shipping and storage as well as when in use, particularly at lower liquid levels.
Abstract:
The invention relates to a process for increasing the observed titer of a virus stock for the purpose of increasing the calculated log reduction (LRV) in virus clearance studies. A tissue culture or assay plate is seeded with an indicator cell line and titrated with a virus stock followed, by a centrifugation step for about 5 minutes to about 24 hours at a g-force ranging from about 50x g to about 2400x g, and at a temperature from about 4°C to about 39°C. The resulting calculated virus titer after undergoing the centrifugation step is 10-fold higher than the virus titer would be if determined in the absence of the centrifuging step.
Abstract:
The invention relates to the filtering of liquid samples, preferably in a laboratory environment, for example for collecting micro organisms from the liquid sample for subsequent testing. The invention provides a method for filtering a liquid sample which comprises providing a blank of a deformable sheet material and a filtration medium, deforming the blank to form a funnel extending above and about the filtration medium, introducing the liquid sample to be filtered into the so formed funnel, and filtering the liquid sample from the funnel through the filtration medium, for example to a downstream receptacle. The method is accordingly based on the concept that the funnel is not or at least not completely preformed but provided in a form of a blank of a deformable material sheet which is deformed so as to form the funnel at the point and time of use during filtration.
Abstract:
The invention concerns a treated water purification system (18) comprising a closed water flow loop (107) said loop comprising at least one treated water supply point (A), at least one point of use (U) of purified water, a pump means (101 ), a sterilization means (106) and a filtration means (103), characterized in that the zone (106) comprises the supply point (A) and a water extraction point (P), situated upstream of the supply point (A), and in that the extraction point (P) and the supply point (A) are both situated in a sector (106B) of the sterilization zone (106) that is isolated from the two connection points (R M , R V ) of the loop (107) to the zone (106) by two other sectors (106A, 106C) of the zone (106). Method for use of such a system.
Abstract:
A composite liquid filtration platform including a composite filtration medium featuring an electrospun polymeric nanofiber layer collected on a porous membrane. When in use, the porous membrane acts as a prefilter used upstream from the polymeric nanofiber layer to remove particles from a liquid stream flowing through the composite filtration structure. The nanofiber layer, positioned downstream from the porous membrane, is used as the retentive layer for critical filtration to provide biosafety assurance, and is responsible for capturing microorganisms like bacteria, mycoplasma or viruses. The composite liquid filtration platform provided herein exhibits permeability advantages over conventional porous membranes or nanofiber mats spun on coarse non-wovens.
Abstract:
The invention relates to accelerated mixed gas integrity testing methods, devices, and systems for integrity testing wetted single and multi-layered porous materials., whereby the testing method is non-destructive to the porous materials being tested. The accelerated mixed gas integrity test method includes one or more of the following components: i) a permeate side gas purge component: ii) a permeate side volume reduction component; and iii) a permeate side circulation component. The invention is directed towards reducing the length of time necessary to complete the integrity testing of single and multilayered porous materials, elements and membranes.
Abstract:
The invention relates to a new process for treatment of residual nucleic acids present on the surface of laboratory consumables. This process combines two treatment phases: i) Treating with ethylene oxide in gaseous phase; then ii) Treating said surface with hydrogen peroxide in liquid phase or in gaseous phase; The effect of this treatment is to avoid the amplification of said residual nucleic acids, in particular during PGR or TMA reactions.