Abstract:
The present invention concerns a device for room temperature reverse-bias operation photo-detection. The device comprising: - a planar first electrode extending in a planar direction; - a second electrode positioned above the first electrode in a direction substantially perpendicular to said planar direction; and - an active region sandwiched between the first and second electrode. The active region consists of a light absorbing perovskite and wherein the light absorbing perovskite is in direct contact with at least one of the first and second electrodes.
Abstract:
A method for detecting ink writings in a specimen comprising stacked pages, allowing a page-by-page reading without turning pages The method compris- es steps of taking a set of projection x-ray images for different positions of the specimen with respect to an x-ray source and a detector from an apparatus for taking projection x-ray images; storing the set of projection x-ray images in a suitable computer system; and processing the set of projection x-ray images to tomographically reconstruct the shape of the specimen.
Abstract:
A multi-camera hemispherical very wide field of view imaging apparatus with omnidirectional illumination capability comprises a cylindrical body (4, 4.a, 4.b), a hemispherical mechanical frame (2) arranged on one end of the cylindrical body (4, 4.a, 4.b), a plurality of imaging channels (3), each imaging channel (3) comprising at least an image sensor and related optics with a fixed focus appropriate for endoscopic imaging, the plurality of imaging channels (3) being distributed over the hemispherical mechanical frame (2), a light source arranged centre-down at a back part of the plurality of imaging channels (3) and inside or at the end of the cylindrical body (4, 4.a, 4.b). Each imaging channel (3) comprises a plurality of lightning channels (1) around their centre, each of the plurality of lightning channels (1) comprising at least one microfiber light guide having a determined angle of curvature arranged to transmit the light from the light source. The imaging apparatus further comprises a control and processing circuit (5) comprising a camera control unit (6), an illumination control unit (7), an illumination unit (8), a sample and capture unit (9), an image processing unit (10) and an output interface (11) to a PC. The camera control unit (6) is configured to power each of the plurality of imaging channels (3) and make automatic gain compensation for each imaging channel (3), the illumination control unit (7) is configured for automatic intensity dimming, the sample and capture unit (9) is an interface circuit for correct sampling, extraction and capturing frames of individual imaging channels (3), the image processing unit (10) is configured for constructing a spherical panoramic image by applying a determined algorithm, and the output interface (11) is arranged to output the spherical panoramic image to a system configured to visualize it.
Abstract:
The present invention relates to a multilayer composite material comprising: -a base layer -a metallic layer consisting of an insulating matrix phase and of a metallic particles phase, said metallic particles being distributed in the insulating matrix, wherein a volume fraction &phis; being the ratio between the volume of metallic particles and the volume of the metallic layer corresponds to a critical volume fraction &phis;* + δ&phis;, with 0
Abstract:
A waveguide for transmitting signals at terahertz (THz) frequencies, wherein said waveguide comprises at least a matrix and an insert piece having a waveguide channel, wherein said piece is inserted in said matrix.
Abstract:
A method for performing a post processing patterning on a diced chip having a footprint, comprises the steps of: - providing a support wafer; - applying a first dry film photoresist to the support wafer; - positioning a mask corresponding to the footprint of the diced chip on the first dry film photoresist; - exposing the mask and the first dry film photoresist to UV radiation; - removing the mask; - developing the exposed first dry film photoresist to obtain a cavity corresponding to the diced chip; - positioning the diced chip inside the cavity; - applying a second dry film photoresist to the first film photoresist and the diced chip; - exposing and developing the second dry film photoresist applied to the diced chip in accordance with the post processing pattern; and - performing an anisotropic dry etching of the chip to form a via therein. Furthermore, a method for obtaining a stack of two semiconductor chips or wafers in a back to face configuration, whereby at least one of the semiconductor chips or wafers comprises a through silicon via (TSV), comprises the steps of: - providing a first semiconductor chip or wafer; - providing a second semiconductor chip or wafer; - making a hole through the second semiconductor chip or wafer from a face side to a back side; - applying the face side of second semiconductor chip or wafer on a release tape; - depositing parylene on the assembly of the second semiconductor chip or wafer and the release tape, thereby obtaining a sidewall passivation in the hole and a bonding layer on the back side of the second semiconductor chip or wafer; - releasing the release tape, thereby obtaining a membrane of parylene covering an opening of the hole on the front side; - positioning the back side of the second semiconductor chip or wafer relative to a face side of the first semiconductor chip or wafer; - bonding the second semiconductor chip or wafer to the first semiconductor chip or wafer by applying pressure and heat; - removing the membrane of parylene by directional etching; and - electrically connecting the face side of the second semiconductor chip or wafer to the face side of the first semiconductor chip or wafer by depositing a conductor inside the hole, thereby obtaining the TSV.
Abstract:
A multimode waveguide illuminator and imager relies on a wave front shaping system that acts to compensate for modal scrambling and light dispersion by the multimode waveguide. A first step consists of calibrating the multimode wave¬ guide and a second step consists in projecting a specific pattern on the wave¬ guide proximal end in order to produce the desire light pattern at its distal end. The illumination pattern can be scanned or changed dynamically only by chang¬ ing the phase pattern projected at the proximal end of the waveguide. The third and last step consists in collecting the optical information, generated by the sample, through the same waveguide in order to form an image. Known free space microscopy technique can be adapted to endoscopy with multimode waveguide, such as, but not limited to, fluorescence imaging or Raman spectros¬ copy or imaging, 3D linear scattering imaging or two-photon imaging. Super- resolution, i.e., resolution below the diffraction limit, is achieved for example but not limited to, using the STimulated Emission Depletion microscopy (STED) technique or the Structured Illumination Microscopy (SIM) technique or a stochastic illumination based method (PALM, STORM) in combination with the multimode waveguide imaging method.
Abstract:
The invention concerns a method for efficiently performing a complex spectral distribution of a radiation source by determining populations of matter in atomic levels, the method comprising: using a computer to perform the following: considering an exact atomic system (up to the fine structure level or even above) containing multiple excited levels "j" belonging to M manifolds {alpha(1)}...{alpha(Mu)}, numerous ground and single excited levels "k", and corresponding transition matrix elements, performing a reduced system RS from the exact atomic system wherein all j-levels belonging to the manifolds {alpha(1)}...{alpha(Mu)} are lumped together to create one level for each manifold {alpha(beta)} comprising of all possible methods for generalizing the manifold definition, performing an Independent Recovery System of Equations IRSE containing j recovery systems computed from the exact atomic system, each recovery system comprising, instead of all j levels, a level j and a level mj obtained by lumping together all levels from the manifolds, except the j-level itself, calculating transition matrix elements Walphajk and Wkalphaj (note, that alphaj is the level number in RS of the manifold {a} to which j belongs) of RS to determine populations nk of all levels k, for each recovery system, calculating transition matrix elements Wmjk, Wkmj, Wmjj and Wjmj from nk to determine a non-statistical excited populations nj (k) of each level j ("kappa" is the iteration index).
Abstract:
An optical fibre designed to simultaneously attenuate the effect of modulation instability and stimulated Raman scattering. A first solution proposes to use non-zero dispersion shifted fibres in the normal dispersion regime to reduce both influences at the same time. A further solution proposes to implement corresponding filter elements in the signal line. A still further solution proposes to additionally provide absorber elements for the Raman wavelengths or to design the core as a leaky one for these wavelengths.
Abstract:
A method for fabricating a fluid container, wherein at least two half containers are mated in said fluid to be contained in said container. This method allows the incorporation of prefabricated devices into each half containers as well as the functional coupling of these devices after mating of the half containers, thus resulting in a functional hybrid MEMS fluid container.