Abstract:
A method for forming a feature in a device layer, including forming a first layer of a liftoff material and a second layer of photoresist over the liftoff material, exposing the photoresist and developing the photoresist and the liftoff layer. The photoresist develops at a slower rate than the liftoff layer. The development results in a first opening in the lift off layer and a second opening in the photoresist layer wherein the first opening is smaller than the second opening because of the different developing rates. The device layer is then dry etched or ion milled through the opening. Subsequent removal of the first layer and second layer leaves a clean surface of the patterned device layer, without the fences that can be formed using other methods.
Abstract:
A method for forming through silicon vias (TSVs) in a silicon substrate is disclosed. The method involves forming a silicon post as an substantially continuous annulus in a first side of a silicon substrate, removing material from an opposite side to the level of the substantially continuous annulus, removing the silicon post and replacing it with a metal material to form a metal via extending through the thickness of the substrate. The substantially continuous annulus may be interrupted by at least one tether which connects the silicon post to the silicon substrate. The tether may be formed of a thing isthmus of silicon, or some suitable insulating material.
Abstract:
Systems and methods for forming an encapsulated device include a substantially hermetic seal which seals a device in an environment between two substrates. The substantially hermetic seal is formed by an alloy of two metal layers, one having a lower melting temperature than the other. The metal layers may be deposited two substrates, along with a raised feature formed under at least one of the metal layers. The two metals may form an alloy of a predefined stoichiometry in at least two locations on either side of the midpoint of the raised feature. The formation of the alloy may be improved by the use of an organic wetting layer adjacent to the lower melting temperature metal. Design guidelines are set forth for reducing or eliminating the leakage of molten metal into the areas adjacent to the bondlines.
Abstract:
Systems and methods for forming an encapsulated device include a substantially hermetic seal which seals a device in an environment between two substrates. The substantially hermetic seal is formed by an alloy of two metal layers, one having a lower melting temperature than the other. The metal layers may be deposited two substrates, along with a raised feature formed under at least one of the metal layers. The two metals may form an alloy of a predefined stoichiometry in at least two locations on either side of the midpoint of the raised feature. The formation of the alloy may be improved by the use of an organic wetting layer adjacent to the lower melting temperature metal. Design guidelines are set forth for reducing or eliminating the leakage of molten metal into the areas adjacent to the bondlines.
Abstract:
Systems and methods for forming a magnetostatic MEMS switch include forming a movable beam on a first substrate, forming the electrical contacts on a second substrate, and coupling the two substrates using a hermetic seal. A shunt bar on the movable plate may close the switch when lowered onto the contacts. The switch may generally be closed, with the shunt bar resting on the contacts. However, a magnetically permeable material may also be inlaid into the movable plate. The switch may then be opened by placing either a permanent magnet or an electromagnet in proximity to the switch.
Abstract:
The invention is directed to an inexpensive method for bonding two wafers. The method uses an adhesive material disposed between two handling sheets and stamped with a plurality of through holes. The through holes are registered with the locations of devices formed on a substrate. The adhesive material is placed between to two substrates, around the devices, and cured.
Abstract:
A method for forming electrical contacts on a semiconductor substrate is disclosed. The method includes forming a first metal layer over the substrate, and forming a layer of a second metal oxide by sputter deposition of a second metal in an oxygen environment. In some embodiments, the second metal oxide may be ruthenium dioxide, and the first metal layer may be gold, copper, platinum, silver or aluminum.
Abstract:
A microfabricated optical apparatus that includes a light source driven by a waveform, wherein the waveform is delivered to the light source by at least one through silicon via. The microfabricated optical apparatus may also include a light-sensitive receiver which generates an electrical signal in response to an optical signal. The electrical signal may be communicated to external devices by at least one additional through silicon via, and the signals routed to the encapsulated devices by metal traces. The vias may couple a ground plane to a metal trace layer at intervals, effectively quashing the ability of the bondline to interfere with the absorbed or radiated signal frequency.
Abstract:
A bonding technology is disclosed that can form an anodic, conductive bond between two optically transparent substrates. The anodic bond may be accompanied by a metal alloy, solder, eutectic and polymer bond. The first anodic bond may provide one attribute such as hermeticity, whereas the second bond may provide another attribute, such as electrical conductivity.
Abstract:
A method for bonding two substrates is described, comprising providing a first and a second silicon substrate, providing a raised feature on at least one of the first and the second silicon substrate, forming a layer of gold on the first and the second silicon substrates, and pressing the first substrate against the second substrate, to form a thermocompression bond around the raised feature. The high initial pressure caused by the raised feature on the opposing surface provides for a hermetic bond without fracture of the raised feature, while the complete embedding of the raised feature into the opposing surface allows for the two bonding planes to come into contact. This large contact area provides for high strength.