Abstract:
A catalyst for an oxygen evolution reaction has a higher and longer-life catalytic activity than that of the conventional and expensive noble metal oxide catalysts, such as RuO2 and IrO2. An A-site ordered perovskite oxide catalyst (such as CaCu3Fe4O12 and CaMn3Mn4O12 etc.) as an oxygen evolution reaction catalyst is excellent in cost effectiveness. The catalyst has a high catalytic activity compared with a noble metal oxide catalyst, and a long repetition use life since it is extremely stable also under the oxidative reaction conditions. Use of the catalyst is expected to the important energy conversion reactions such as a charge reaction of a metal-air battery, an anode oxygen evolution reaction in the case of a direct water decomposition reaction by sunlight, etc.
Abstract translation:用于析氧反应的催化剂具有比常规和昂贵的贵金属氧化物催化剂如RuO 2和IrO 2更高和更长寿命的催化活性。 作为析氧反应催化剂的A位置的钙钛矿氧化物催化剂(例如CaCu 3 Fe 4 O 12和CaMn 3 Mn 4 O 12等)具有优异的成本效益。 催化剂与贵金属氧化物催化剂相比具有高催化活性,并且由于在氧化反应条件下也极其稳定,因此重复使用寿命长。 催化剂的使用预期是重要的能量转换反应,例如金属 - 空气电池的电荷反应,在阳光直接水分解反应的情况下的阳极氧析出反应等。
Abstract:
The present invention involves preparing compounds represented by the formula. (In the formula: R1 represents a Br group, an iodine group, a Cl group, an NO2 group, or an NH2 group; R2 represents a halogen group, an NO2 group, an NH2 group, Sn(R6)3, N═N—NR7R8, OSO2R9, NR10R11, phenyliodonium, a heterocyclic group iodine, boric acid, or a borate ester; R30 represents a protective group PG1; R40 or R50 represent hydrogen, a protective group PG2, or C6H5(C6H5)C═N, wherein NR40R50 are together.)
Abstract:
An image rejection filter comprising a waveguide-type 90-degree hybrid coupler having an input port for receiving an input signal within a millimeter or submillimeter band, first and second output ports for dividing the input signal in two and outputting the divided signals, respectively, wherein the one signal deviates by a 90-degree phase from the other signal, and a branch port for outputting the signal; a pair of band pass filters: a waveguide-type first band pass filter whose one end is connected with the first output port and a waveguide-type second band pass filter whose one end is connected with the second output port; and a pair of radiowave absorptive terminations: a first radiowave absorptive termination connected to the other end of the first band pass filter and a second radiowave absorptive termination connected to the other end of the second band pass filter.
Abstract:
The first cladding 52 has a two-layer structure formed of a solid inner layer 62A passed through the center axis of the first cladding 52 and an outer layer 62B enclosing the inner layer 62A and the plurality of cores 51 with no gap. A refractive index n1 of the core 51 is provided higher than refractive indexes n2A and n2B of the inner layer 62A and the outer layer 62B, the refractive indexes n2A and n2B of the inner layer 62A and the outer layer 62B are provided higher than a refractive index n3 of the second cladding 53, and the refractive index n2A of the inner layer 62A is provided lower than the refractive index n2B of the outer layer 62B.
Abstract:
The present invention is a sensor for detecting a microorganism, which is provided with a detection unit equipped with a detection electrode and a polymer layer, wherein the polymer layer is arranged on the detection electrode and is provided with a template having a three-dimensional structure complementary to a three-dimensional structure of a microorganism to be detected. The sensor detects a microorganism on the basis of the captured state of the microorganism onto the template. The polymer layer is formed by a manufacturing method including a polymerization step of polymerizing a monomer in the presence of the microorganism to be detected to form a polymer layer having the microorganism incorporated therein on the detection electrode, and a disruption step of bringing at least a part of the microorganism incorporated in the polymer layer into contact with a solution containing a lytic enzyme to disrupt the microorganism.
Abstract:
An optical fiber (1) includes (i) an inner core (111) whose refractive index distribution has an α profile, (ii) an outer core (112) which surrounds the inner core (111), and (iii) a clad (12) which surrounds the outer core (112). In the optical fiber (1), Rd is set to not less than 0.15, where Rd is a ratio of a refractive index difference between the outer core (112) and the clad (12) to a refractive index difference between a center part of the inner core (111) and the clad (12).
Abstract:
The purpose of the present invention is to provide a novel method for producing cereulide and a derivative thereof; an intermediate for cereulide; and a novel cereulide derivative. A novel didepsipeptide, a novel tetradepsipeptide, a novel octadepsipeptide and a novel dodecadepsipeptide are prepared. A linear precursor of cereulide or a derivative thereof, which is composed of any one of the novel depsipeptides, is cyclized by forming an intramolecular amide bond.
Abstract:
An optical fiber, including (i) an inner core having an α-power refractive index profile, (ii) an outer core having a refractive index of n1′, and (iii) a cladding having a refractive index of n2 (n1′
Abstract:
The present invention relates to etching for removing a carbon thin film formed on a surface of a sample, to prevent a damage on a sample and eliminate the necessity of providing a special device (such as vacuum pump) as is required in plasma etching. A sealed reaction chamber 100A in which a sample 500 formed with a carbon thin film 510 on its surface is to be set, a gas feed means 200A for feeding argon gas which is an inert gas Ar into which a predetermined proportion of oxygen gas O2 has been mixed from one end to the interior of the reaction chamber 100A, an exhaust means 300A for discharging carbon dioxide gas CO2 from the downstream side of the inert gas Ar fed from the gas feed means 200A, and a heating means 400A for heating the sample 500 to 550null C. or higher are provided.