Abstract:
A v-groove assembly is used to edge couple a lensed fiber (e.g., an optical fiber made of silica) with a waveguide in a photonic chip. The v-groove assembly is made from fused silica. Fused silica is used to so that an adhesive (e.g., epoxy resin) used in bonding the lensed fiber to the v-groove assembly and/or bonding the v-groove assembly to the photonic chip can be cured, at least partially, by light.
Abstract:
A method of fabricating a composite semiconductor structure is provided. Pedestals are formed in a recess of a first substrate. A second substrate is then placed within the recess in contact with the pedestals. The pedestals have a predetermined height so that a device layer within the second substrate aligns with a waveguide of the first substrate, where the waveguide extends from an inner wall of the recess.
Abstract:
A photonics system includes a transmit photonics module and a receive photonics module. The photonics system also includes a transmit waveguide coupled to the transmit photonics module, a first optical switch integrated with the transmit waveguide, and a diagnostics waveguide optically coupled to the first optical switch. The photonics system further includes a receive waveguide coupled to the receive photonics module and a second optical switch integrated with the receive waveguide and optically coupled to the diagnostics waveguide.
Abstract:
A waveguide coupler includes a first waveguide and a second waveguide. The waveguide coupler also includes a connecting waveguide disposed between the first waveguide and the second waveguide. The connecting waveguide includes a first material having a first index of refraction and a second material having a second index of refraction higher than the first index of refraction.
Abstract:
A waveguide mode expander couples a smaller optical mode in a semiconductor waveguide to a larger optical mode in an optical fiber. The waveguide mode expander comprises a shoulder and a ridge. In some embodiments, the ridge of the waveguide mode expander has a plurality of stages, the plurality of stages having different widths at a given cross section.
Abstract:
A waveguide mode expander couples a smaller optical mode in a semiconductor waveguide to a larger optical mode in an optical fiber. The waveguide mode expander comprises a shoulder made of crystalline silicon and a ridge made of non-crystalline silicon (e.g., amorphous silicon). In some embodiments, the ridge of the waveguide mode expander has a plurality of stages, the plurality of stages have different widths and/or thicknesses at a given cross section.
Abstract:
A method of fabricating a semiconductor device includes providing an assembly substrate including a split plane defining a handle region and a transfer region, a film layer coupled to the transfer region, and one or more active devices coupled to the film layer. The method also includes providing a device substrate including one or more bonding regions and joining the assembly substrate to the device substrate. The method further includes splitting the assembly substrate to remove the handle region.
Abstract:
An optical circulator includes a first optical isolator including a first port and a second port and a plurality of optical isolators coupled to the second port of the first optical isolator. Each of the plurality of optical isolators comprise a first port and a second port.
Abstract:
A method of fabricating a composite semiconductor structure includes providing an SOI substrate including a plurality of silicon-based devices, providing a compound semiconductor substrate including a plurality of photonic devices, and dicing the compound semiconductor substrate to provide a plurality of photonic dies. Each die includes one or more of the plurality of photonics devices. The method also includes providing an assembly substrate having a base layer and a device layer including a plurality of CMOS devices, mounting the plurality of photonic dies on predetermined portions of the assembly substrate, and aligning the SOI substrate and the assembly substrate. The method further includes joining the SOI substrate and the assembly substrate to form a composite substrate structure and removing at least the base layer of the assembly substrate from the composite substrate structure.
Abstract:
A method for fabricating a composite device comprises providing a platform, providing a chip, and bonding the chip to the platform. The platform has a base layer and a device layer above the base layer. An opening in the device layer exposes a portion of the base layer. The chip is bonded to the portion of the base layer exposed by the opening in the device layer. A portion of the chip extends above the platform and is removed.