一种低膨胀超高硅铝合金的制备方法

    公开(公告)号:CN1279197C

    公开(公告)日:2006-10-11

    申请号:CN200410043855.9

    申请日:2004-09-08

    Abstract: 本发明公开一种超高硅铝合金产品的制备方法——一种低膨胀超高硅铝合金的制备方法。硅在整体合金中所占的质量百分比为61.6%-70.8%。制备方法,一、将硅粉(3)装入模具体(4)的型腔(2)之内,冲头(1)向下把硅粉(3)压制成预制块;二、将模具体(4)预热至500℃~600℃,铝材料加热至熔化;三、将铝材料浇注到模具体(4)内;四、通过冲头(1)向下施加压力;五、冲头(1)向下保持压力并使模具体(4)冷却;六、脱模;七、铸锭经过高温退火处理。本发明的超高硅铝合金具有含硅量高、低密度、高致密低膨胀等性能。本发明采用挤压铸造方法,强制将硅元素外加到铝合金中制成超高硅铝合金。此方法具有制造设备简单、成本较低等特点。

    基于球坐标测量原理的高精度球度仪

    公开(公告)号:CN114034247B

    公开(公告)日:2024-11-22

    申请号:CN202111370970.7

    申请日:2021-11-18

    Abstract: 基于球坐标测量原理的高精度球度仪,属于球度精密测量技术领域。它提供一种检测精度高,检测全面的基于球坐标测量原理的高精度球度仪;该高精度球度仪,包括高精度卧式主轴、非接触式位移传感器及高精度气体静压转台;所述非接触式位移传感器通过夹具一安装在高精度卧式主轴上,所述被测工件通过夹具二安装在高精度气体静压转台上,所述高精度卧式主轴的回转轴和高精度气体静压转台的回转轴相互垂直设置,通过控制着两个相互垂直回转轴的旋转运动可以模拟出球面的成型轨迹,用于完成球面的完整测量。本发明具有更好的精度,无需担心测量角度的问题,能适应全球面检测,可以兼顾直径大小不同的工件。

    一种基于第一性原理和相图计算的Ti2AlNb合金成分优化方法

    公开(公告)号:CN118737332A

    公开(公告)日:2024-10-01

    申请号:CN202410722201.6

    申请日:2024-06-05

    Abstract: 一种基于第一性原理和相图计算的Ti2AlNb合金成分优化方法,涉及第一性原理领域,具体涉及一种基于第一性原理和相图计算的Ti2AlNb合金设计方法。为了解决Ti2AlNb合金的成分优化难的问题,通过MaterialsStudio和Thermo‑Calc软件对Ti2AlNb合金的合金化元素进行筛选,进而实现对Ti2AlNb合金的成分进行设计。方法:构建晶体模型、对晶体模型进行合金化掺杂、计算掺杂前后晶体模型的电子结构和力学性能、筛选性能较为优异的Ti2AlNb合金体系、对筛选出的Ti2AlNb合金体系进行相图计算。本发明通过材料计算的方法对Ti2AlNb合金的合金化元素进行预测筛选,进而对Ti2AlNb合金的成分进行设计,对Ti2AlNb合金的合金化实验有一定的理论指导作用,同时有助于加快Ti2AlNb合金的合金化的实际应用。

    一种碳化硅陶瓷深小孔的超精密加工方法

    公开(公告)号:CN115194955B

    公开(公告)日:2024-09-17

    申请号:CN202210988689.8

    申请日:2022-08-17

    Abstract: 一种碳化硅陶瓷深小孔的超精密加工方法,属于机械加工技术领域,具体包括以下步骤:步骤一、将碳化硅陶瓷块固定在超声辅助磨削机床上;步骤二、在轴向超声振动作用下加工若干个与刀具同直径的深小孔Ⅰ,并留出余量Ⅰ;刀具进给速度为25‑35mm/min,主轴转速为6000‑10000rpm,在入口处降低进给速度至20mm/min,增大主轴转速至10000rpm;步骤三、在出口处降低进给速度至20mm/min,增大主轴转速至10000rpm,并留出余量Ⅱ;步骤四、在轴向超声振动作用下去除余量Ⅰ和余量Ⅱ,刀具进给速度为15‑20mm/min,主轴转速为8000‑10000rpm,获得碳化硅陶瓷深小孔Ⅱ。

    一种抗多发弹的高约束仿生结构装甲及其制备方法

    公开(公告)号:CN114812276B

    公开(公告)日:2024-04-19

    申请号:CN202210542158.6

    申请日:2022-05-18

    Abstract: 一种抗多发弹的高约束仿生结构装甲及其制备方法,本发明涉及一种抗多发弹的高约束仿生结构装甲及其制备方法。本发明是要解决传统陶瓷‑背板装甲、传统阵列陶瓷结构装甲抗多发弹性能弱、材料利用率低等问题。它由六边形阵列陶瓷结构、高约束力约束层和吸能支撑层组成;所述六边形阵列陶瓷结构由若干个六边形陶瓷柱体按照六边形阵列而成,相邻六边形陶瓷柱体等距间隔;引入六边形阵列陶瓷结构作为表层磨蚀弹体,通过压力浸渗方式使金属与陶瓷间润湿形成高约束界面,吸能支撑层为高分子纤维层与钢背板组合而成。本发明能够在提升装甲抗弹、抗多发弹性能的同时,降低了装甲成本。

Patent Agency Ranking