Abstract:
본 발명은 물과 기체를 통과시키는 다수의 기공들을 포함한 다공질 실리콘 박막에서, 기공 입구 주위에 열변형 구조체를 설치하여 기공을 통과하는 물의 이동을 조절하는 것에 관한 것이다. 구체적으로 물과 접촉하는 면에서 친수성 물질로 코팅된 박막 표면으로부터 기공의 주위에 설치되는 열변형 구조체는 표면에서의 온도 변화에 따라 기공의 크기를 조절함으로써 모세관압에 의해 기공을 통과하는 물의 이동량을 조절할 수 있다. 실리콘 박막, 열변형율
Abstract:
An efficiency test device for a fuel cell and an efficiency test method for using the fuel cell are provided to grasp problems in design by obtaining local and detail information for the performance of the fuel cell according to a position in a separation plate. An efficiency test device for a fuel cell includes a plurality of separation plates(100) and a measurement sensor. The separation plate has a manifold inlet(110) and a manifold outlet(120). A channel(130) is formed on one surface of the separation plate to couple the manifold inlet to the manifold outlet. The size and number of the channels are different. The measurement sensor is mounted on a corresponding region of the separation plate for an independent measurement to each of the divided regions. A metal plate(140) having electric conductivity is attached to each of a manifold inlet region(115), a central region(135), and a manifold outlet region(125). Each of the measurement target regions is insulated by forming a remaining region except the measurement target region attached to the metal plate with an insulating material(150).
Abstract:
A catalyst slurry with a high viscosity suitably used in a process of continuously manufacturing a membrane electrode assembly of a polymer electrolyte fuel cell is provided, and a method for manufacturing the catalyst slurry is provided to produce a large quantity of membrane electrode assemblies with the same quality within a short time. A method for manufacturing a catalyst slurry used in continuous manufacturing of a membrane electrode assembly of a polymer electrolyte fuel cell comprises the steps of: pouring distilled water into which a dispersant and an anti-foaming agent are dissolved into catalyst particles; adding an organic solvent comprising a binder into the distilled water comprising the catalyst particles; primarily stirring the catalyst slurry; secondly stirring the primarily stirred catalyst slurry; defoaming the secondly stirred catalyst slurry, and thirdly stirring the defoamed catalyst slurry, wherein the first stirring step is performed in a ultrasonic cleaner containing water for 5 to 30 minutes, the second stirring step is performed at a rotation speed of 6 to 15 revolutions per minute within a defoaming machine for 12 to 24 hours, and the third stirring step is performed at a rotation speed of 6 revolutions per minute for 24 to 72 hours after releasing the vacuum state. Further, a viscosity of the catalyst slurry is 8000 to 12000 cP.
Abstract:
A central gas distributor for a fuel cell is provided to relieve the local lack of the supply of reaction gas effectively, thereby improving the performance of a fuel cell stack remarkably. A central gas distributor for a fuel cell comprises a central part(100) which guides the flow of the reaction gas supplied from the front part or the back part to the central side and separates it from the central part into left and right sides; and left and right parts(200) which guide the flow of the reaction gas introduced through the central part supplied from the front part to the front side and guide the flow of the reaction gas introduced through the central part supplied from the back part to the back side so as to form a flowing fraction of the reaction gas flow and to discharge it to left or right sides.
Abstract:
A fuel cell is provided to improve electrical conductivity and water maintenance without the deterioration of gas permeability by using a coated gas diffusion layer. A fuel cell comprises a gas diffusion layer coated with a microlayer which comprises 25 wt% of a carbon nanotube or a carbon nanofiber and 75 wt% of carbon black. Preferably the gas diffusion layer comprises a gas diffusion material and a microlayer; and the gas diffusion material is any one selected from carbon paper, carbon cloth and expanded and sintered metal. Preferably the fuel cell uses a proton exchange membrane as an electrolyte membrane.
Abstract:
본 발명은 연료전지에 공급하기 위한 수소를 발생시키는 수소 발생기를 구성하는 마이크로채널 반응기의 제조 방법과 반응기에 관한 것이다. 본 발명의 방법은, 박판에 결합공과 통공을 형성시키는 단계와; 한 장 이상의 박판에 마이크로채널을 관통 형성시키는 단계와; 박판에 유입 및 배출 매니폴드를 형성시키는 단계와; 결합공과 통공만이 관통 형성된 덮개판(31)과 한 장 이상의 마이크로채널 박판(32) 및 매니폴드 박판(33)(33')(33")을 일련의 순으로 적층하는 단계로 이루어지며, 다수의 결합공 통공이 관통 형성된 한 쌍의 덮개판(31)과; 덮개판(31) 사이에 적층되며 마이크로채널(C)이 관통 형성된 1장 이상의 마이크로채널 박판(32)과; 마이크로채널 박판(32)과 덮개판 사이에 적층되는 1∼2장의 매니폴드 박판(33)(33')(33")으로 구성되며, 상기 마이크로채널이 박판을 관통하여 매니폴드와 분리 형성됨에 본 발명의 기술적 특징이 있다. 본 발명의 방법과 반응기는 반응기의 효율을 향상시킬 수 있으며, 제조 원가를 절감할 수 있는 이점이 있다. 연료전지, 마이크로채널, 수소 발생기, 반응기