Abstract:
A Multi-Point HSDPA system may provide downlink aggregation from multiple cells for a single receive antenna UE without requiring an advanced Type 3i receiver, by providing switching-based scheduling from one of the cells based on channel conditions of the respective cells, as reported by the UE. For example, the UE may monitor the HS-SCCH from both cells so that it may decode the HS-DSCH in any particular TTI as data is scheduled. The UE may further transmit a CQI for each of the cells, so that scheduling decisions between the cells at each TTI may be dynamically made to provide the downlink packet from the better of the cells.
Abstract:
A method of wireless communication includes utilizing a first outer loop for single-stream transmissions when a requested PCI by a UE is within a first set. The utilizing the first outer loop includes utilizing a first outer loop margin to adjust a size of a transport block by a first backoff margin when the UE requests a PCI within the first set. The method further includes utilizing a second outer loop for single-stream transmissions when the requested PCI by the UE is within a second set different from the first set. The utilizing the second outer loop includes utilizing a second outer loop margin to adjust the size of the transport block by a second backoff margin when the UE requests a PCI within the second set.
Abstract:
A base station may precode a first reference signal using a first precoder (P1) and at least one second reference signal using at least one second precoder (P2). At least two UEs may measure the first reference signal and the at least one second reference signal, and transmit channel state feedback based on the measuring (m11 and m12 for a first UE, and m21 and m22 for a second UE). The channel state feedback may comprise channel state information compressed by at least one neural network. The base station may derive a higher-level precoder (W) for multiple-input multiple-output (MIMO) downlink transmission to the at least two UEs.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a first device may encode a data set using one or more extraction operations and compression operations associated with a neural network, the one or more extraction operations and compression operations being based at least in part on a set of features of the data set to produce a compressed data set. The first device may transmit the compressed data set to a second device. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may train a first set of layers of a neural network based on channel estimates using a set of resources. The UE may generate a set of weights for the first set of layers of the neural network based on the training. The UE may receive, from a first network entity, an indication of an association between a first set of signals and a second set of signals based on the first set of layers of the neural network. The UE may receive the second set of signals from a second network entity and process the second set of signals using the set of weights for the first set of layers based on the association between the first set of signals and the second set of signals.
Abstract:
Various embodiments may employ neural networks at transmitting devices to compress transmit (TX) waveform distortion. In various embodiments, compressed TX waveform distortion information may be conveyed to a receiving device. In various embodiments, the signaling of TX waveform distortion information from a transmitting device to a receiving device may enable a receiving device to mitigate waveform distortion in a transmit waveform received from the transmitting device. Various embodiments include systems and methods of wireless communication by transmitting a waveform to a receiving device performed by a processor of a transmitting device. Various embodiments include systems and methods of wireless communication by receiving a waveform from a transmitting device performed by a processor of a receiving device.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may perform a measurement operation to attain multiple measurements to report to a base station. The measurements may correspond to a first number of bits if reported. The UE may compress the measurements using an encoder neural network (NN) to obtain an encoder output indicating the measurements. This encoder output may include a second number of bits that is less than the first number of bits. The UE may report the encoder output to the base station in this compressed form. At the base station, the encoder output may be decompressed according to a decoder NN. Once the base station decompresses the encoder output, the UE and base station may communicate according to the measurements determined from the decompression. In some cases, the base station may perform load redistribution based on the measurements.
Abstract:
Systems and methods facilitating feedback of robust channel state information (CSI), such as to provide full CSI feedback or otherwise providing CSI feedback, are described. CSI encoders and/or decoders used by network nodes may implement channel compression/reconstruction based upon neural-network (NN) training of collected channels. A structured payload having an interpretable payload portion and an uninterpretable payload portion may utilized with respect to CSI feedback. The channel compression provided according to some aspects of the disclosure supports feedback of robust CSI, in some instances including full CSI, as determined by a particular network node. Other aspects and features are also claimed and described.
Abstract:
Certain aspects of the present disclosure provide techniques for generating and decoding orthogonal frequency division (OFDM) waveforms with peak reduction tones (PRTs) designed to reduce PAPR. By generating PRT tones with a machine learning (e.g., neural network) based encoder and mapping some of the PRT tones to subcarriers used for physical channels or signals, PAPR may be reduced while efficiently using system resources.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive a configuration identifying a first set of frequency resources for transmitting a sounding reference signal, where the sounding reference signal may be used at least for downlink channel state information acquisition. The UE may receive an indication of an association between the configuration for the sounding reference signal and a second set of frequency resources and determine, based on the association, values for one or more sounding reference signal transmission parameters for the first set of frequency resources. The UE may transmit the sounding reference signal on the first set of frequency resources based on the determined one or more values.