Abstract:
Methods, systems, and devices for wireless communications are described, and relate to a base station to communicating with a user equipment (UE) over a channel. A first device (for example, the base station or the UE) may use a trained neural network to estimate one or more link performance metrics associated with the channel. Predicting the link level performance may include determining one or more neural network weights associated with one or more input parameters associated with the channel to estimate the one or more link performance metrics. The first device may report feedback to the second device based on the estimated link performance metrics. Based on the feedback, the second device may adapt the link by adjusting channel parameters to improve the reliability or efficacy of later transmissions.
Abstract:
Methods, systems, and devices for wireless communication using various coding schemes for data transmission are described. A wireless communication system may support multiple coding schemes such as, for example, turbo codes and low density parity check codes. The system may support selection of the coding scheme based on explicit signaling or implicit evaluation of transmission parameters. A transmitting device may select a coding scheme, encode a message using the selected coding scheme, and transmit the encoded message over a wireless connection. The receiving device may receive the encoded message, select the coding scheme, and decode the message using the select coding scheme.
Abstract:
Certain aspects of the present disclosure provide techniques for qualifying machine learning model -based channel state information (CSI) predictions. An example method generally includes receiving, from a network entity, a channel state information (CSI) prediction model for quantized CSI, calculating CSI based on downlink reference signal measurements, generating a quantized CSI difference value based a quantization of a difference between the calculated CSI and CSI predicted based on a CSI prediction model, and reporting, to the network entity, the calculated CSI and the quantized CSI difference value.
Abstract:
Systems and methods facilitating feedback of robust channel state information (CSI), such as to provide full CSI feedback or otherwise providing CSI feedback, are described. CSI encoders and/or decoders used by network nodes may implement channel compression/reconstruction based upon neural-network (NN) training of collected channels. A structured payload having an interpretable payload portion and an uninterpretable payload portion may utilized with respect to CSI feedback. The channel compression provided according to some aspects of the disclosure supports feedback of robust CSI, in some instances including full CSI, as determined by a particular network node. Other aspects and features are also claimed and described.
Abstract:
Two-phase floating-instant coordinated multipoint (CoMP) operation is disclosed. The CoMP operation may be initiated by the network via a CoMP cluster of network nodes or by user equipments (UEs) configured for uplink CoMP transmissions. The first phase is initiated after a first node to conduct a successful full listen before talk (LBT) procedure signals the other participating nodes to perform an abbreviated LBT procedure and identifies the beginning of the second phase. After success of the full and abbreviated LBT procedures, each associated node will initiate a first transmission in the first phase. The leading node determines how many of the other nodes are available for transmission and decides, based on that amount and the rules of the network, whether to continue with the CoMP operations. If enough of the other nodes are available, the participating nodes will conduct the CoMP transmissions at the identified beginning of the second phase.
Abstract:
Multiple modulation and coding scheme (MCS) tables for new radio (NR) networks is disclosed. Multiple MCS tables are defined with different sets of MCS values selected for improved performance in various transmission conditions.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may multiplex reference signal (RS) transmissions for different antenna ports over a set of resource elements using a code division multiplexing (CDM) group spreading in a time dimension and a frequency dimension. The base station may transmit the RS transmissions over the set of resource elements based at least in part on the multiplexing to a user equipment (UE). The UE may demultiplex the RS transmissions based at least in part on a CDM group and may select at least one of the time dimension or the frequency dimension over which to demultiplex the RS transmissions based on a determination or other information.
Abstract:
Various aspects of the present disclosure generally relate to neural network based channel state information (CSI) feedback. In some aspects, a device may obtain a CSI instance for a channel, determine a neural network model including a CSI encoder and a CSI decoder, and train the neural network model based at least in part on encoding the CSI instance into encoded CSI, decoding the encoded CSI into decoded CSI, and computing and minimizing a loss function by comparing the CSI instance and the decoded CSI. The device may obtain one or more encoder weights and one or more decoder weights based at least in part on training the neural network model. Numerous other aspects are provided.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may transmit, to a base station, a report indicating that a cooperative reception group including the UE and one or more other UEs connected to the UE over an out-of-band link supports one or more downlink transmit beamforming techniques. The UE may determine, based at least in part on the one or more downlink transmit beamforming techniques supported by the cooperative reception group, a downlink transmit precoder associated with relaxed beamforming nulling. The UE may decode a downlink transmission received from the base station based at least in part on the downlink transmit precoder and one or more decoded bits received from the one or more other UEs in the cooperative reception group. Numerous other aspects are provided.
Abstract:
Multiple modulation and coding scheme (MCS) tables for new radio (NR) networks is disclosed. Multiple MCS tables are defined with different sets of MCS values selected for improved performance in various transmission conditions. The multiple MCS tables may be known to base stations and user equipments (UEs) in the network. A serving base station may determine a set of transmission characteristics related to a transmission environment of a UE. The base station selects one of the MCS tables of the multiple MCS tables based on the set of transmission characteristics. The selected MCS table includes MCS values that may provide improved performance for the UE considering one or more of the characteristics of the set of transmission characteristics. The base station will then transmit an indication of the selected MCS table to the served UE.