Abstract:
A gas turbine engine includes a blade having a tip, a blade outer air seal operatively connected to a case assembly, and an active clearance control system disposed on the case assembly. The active control system includes an actuator assembly. The actuator assembly includes a motor assembly and a shaft. The shaft has a shaft body that extends between a first end that is operatively connected to the motor assembly and a second end that is operatively connected to the blade outer air seal.
Abstract:
An embodiment of a turbine assembly includes, among other possible things, a first component including a first component surface, a second component including a second component surface spaced apart from the first component surface, and a brush seal disposed between the first component and the second component. The brush seal includes, among other things, a first bristled region extending in a first direction from a backing plate, and sealingly engaging one of the first component surface and the second component surface. At least one of the backing plate and the first bristled region includes a nickel-based superalloy material having at least 40% of a Ni3(Al,X) precipitate phase, X being a metallic or refractory element other than Al.
Abstract:
A seal assembly includes a seal arc segment defining first and second seal supports. A carriage defines first and second support members with the first support member supporting the seal arc segment in a first ramped interface and the second support member supporting the seal arc segment in a second ramped interface such that the seal arc segment is circumferentially moveable with respect to the carriage. The seal assembly includes an anti-rotation interface in which the seal arc segment and the carriage are engaged. The anti-rotation interface restricts circumferential movement of the seal arc segment.
Abstract:
A seal assembly includes a seal arc segment that defines radially inner and outer sides and first and second axial arc segment sides, a carriage that carries the seal arc segment, and a cover that defines first and second axial cover sides. The second axial cover side is adjacent the first axial arc segment side.
Abstract:
One exemplary embodiment according to this disclosure relates to a system includes a blade outer air seal (BOAS), and a meter plate. A portion of the meter plate is provided radially outward of a radially outermost surface of the BOAS.
Abstract:
A blade outer air seal (BOAS) according to an exemplary aspect of the present disclosure includes, among other things, a ceramic body having a radially inner face and a radially outer face and a retention feature that extends from the radially outer face. The retention feature includes at least one angled hook that extends at a transverse angle relative to the radially outer face.
Abstract:
One exemplary embodiment of this disclosure relates to a gas turbine engine including an engine case, a retention block attached to the engine case, and a blade outer air seal (BOAS). The BOAS includes a plurality of layers formed of a ceramic matrix composite (CMC) material. At least one of the plurality of layers provides a slot receiving a portion of the retention block.
Abstract:
An instrumented article includes a ceramic-based substrate and at least one conformal electronic device deposited on a surface of the ceramic-based substrate. A compliant layer is located between the ceramic-based substrate and the one or more conformal electronic devices. The compliant layer has a thermal expansion that is intermediate of the thermal expansions of, respectively, the ceramic-based substrate and the one or more conformal electronic devices.
Abstract:
A component according to an exemplary aspect of the present disclosure includes, among other things, a shell defining an interior, a spar extending into the interior and a first flange attached to the spar. The spar is configured to pivot to change a positioning of the shell.
Abstract:
The present disclosure relates to sealing systems for gas turbine engines. In one embodiment, a seal support structure for a gas turbine engine includes a seal support configured to retain a circumferential seal and an engine support configured for mounting the seal support structure to a gas turbine engine mount. The engine support includes at least one channel configured to provide radial movement of the seal support structure and circumferential retention of the seal support. Another embodiment is directed to a sealing system including a circumferential seal and seal support structure configured to provide radial movement.