Abstract:
In this production method, to produce a carbon particle via the detonation method, an explosive substance having a detonation velocity of 6300 m/s or faster is disposed around a raw material substance containing an aromatic compound having two nitro groups or less, and the explosive substance is detonated. This production method allows carbon particles containing nano-scale graphite carbon and diamond to be produced via a detonation method using a non-gunpowder raw material. In addition, the obtained carbon particles have a G/D mass ratio of 2.5 or greater, where G is the graphite carbon mass and D is the diamond mass.
Abstract:
Method and system for controlled nanodiamond synthesis based on treating of a specially prepared solid carbon source target including carbon containing material in liquid media by irradiation energy beam focused at a predetermined distance from the target surface and having parameters to produce a light-hydraulic effect impacting the target surface and leading to the forming of diamond nanocrystals.
Abstract:
The present invention refers to a continuous process for in secco nanomaterial synthesis from the emulsification and detonation of an emulsion. The said process combines the simultaneous emulsification and detonation operations of the emulsion, thus assuring a production yield superior to 100 kg/h. When guaranteeing that the sensitization of the emulsion occurs mainly upon its feeding into the reactor, it is possible to avoid the accumulation of any class-1 substances along the entire synthesis process, thus turning it into an intrinsically safe process. Afterwards, dry collection of the nanomaterial avoids the production of liquid effluents, which are very difficult to process. Given that there's neither accumulation nor resort to explosive substances along the respective stages, the process of the present invention becomes a safe way of obtaining nanomaterial, thus allowing it to be implemented in areas wherein processes with hazardous substance aid are not allowed.
Abstract:
The present invention refers to a nanomaterial synthesis process from the decomposition and subsequent reaction among common and economical insoluble precursors, or precursors which hydrolyze in contact with water, which are incorporated in the internal phase of an emulsion. These insoluble precursors are introduced in the internal phase of an emulsion, then being subject to decomposition and subsequent reaction in the solid state, under shockwave effect during the detonation of the emulsion, the nanomaterial with the intended structure being in the end obtained. The process of the present invention therefore allows obtaining a wide range of nanomaterial as composites or binary, ternary structures or higher structures, with small-sized homogenous primary particles, applicable to several technological fields.
Abstract:
The claimed substance is obtained by the detonation of an explosive with a negative oxygen balance in an enclosed space and in an environment which is inert in relation to carbon, the detonation products being cooled at a rate of 200 to 6000 degrees per minute. The claimed substance contains 30 to 75 wt % carbon (cubic modification), 10 to 15 wt % X-ray amorphous carbon phase, the remainder being crystalline modification carbon. The proportions of different elements present are as follows: carbon 84 to 89 wt %, hydrogen 0.3 to 1.1 wt %, nitrogen 3.1 to 4.3 wt %, oxygen 2.0 to 7.1 wt %, non-combustible additives 2.0 to 5.0 wt %. The surface contains methyl, carboxyl, quinone, lactone, ester and aldehyde functional groups.
Abstract:
A diamond-containing material having the following element content ratio in per cent by weight: carbon 75-90, hydrogen 0.6-1.5, nitrogen 1.0-4.5, oxygen the balance, the following phase content ratio in per cent by weight: roentgen amorphous diamond-like phase 10-30, diamond of cubic modification the balance, and having a porous structure. 10-20 % of the surface of the material consists of methyl, nitryl and hydroxyl groups of two types, as well as functional oxycarbonic groups of the general formula O=R where R represents =COH, =COOH, =CO, =C6H4O or any of their combinations, and 1-2 % of the surface consists of carbon atoms with non-compensated links. A method for obtaining said material consists in detonation of a carbon-containing explosive substance with negative oxygen balance, or a mixture of explosive substances, in a closed volume in the atmosphere of gases inert to carbon, with an oxygen content of 0.1-6.0 % by volume, at a temperature of 303-363K and in the presence of ultradispersed carbon phase with concentration of 0.01-0.15 kg/m.
Abstract:
Druckwellenmaschine (1), die zur Ausführung chemischer Reaktionen geeignet ist. Dies wird dadurch erreicht, dass Mittel (3) vorgesehen sind, welche die Einleitung von mindestens einem Edukt zusätzlich zu dem Brennstoff-Gas-Gemisch ermöglichen, dass die nach der Zündung des Brennstoff-Gas-Gemisches in den jeweiligen Zellen (31) auftretenden Temperaturen und Drücke auf das jeweilige mindestens eine Edukt abgestimmt sind, sodass dieses solange chemisch umgesetzt wird, bis eine Expansionswelle diese Umsetzung zum Erliegen bringt, und dass der Druckwellenmaschine (1) Mittel (8,12) nachgeschaltet sind für eine Austragung des mindestens einen Produktes dieser Umsetzung. Diese Druckwellenmaschine (1) weist einen mindestens eine Lage Zellen (31) aufweisenden Zellenrotor (30) auf, mit einem den Zellenrotor (30) am Umfang und stirnseitig einschliessenden Gehäuse (33), mit Mitteln, welche ein Gas vor dem Eintritt in die Druckwellenmaschine (1) mit einem Brennstoff vermischen zu einem brennbaren Brennstoff-Gas-Gemisch, welches in die Zellen (31) eingeleitet und dort gezündet wird.
Abstract:
Die Erfindung betrifft ein Verfahren zur Erzeugung höchster Energieflüsse durch den Abruf von chemisch gespeicherter Energie - z.B. aus Sprengstoffen - über eine photonengesteuerte Reaktion mit einer Geschwindigkeit der Reaktionsfront, die deutlich über 10 km/s liegt.
Abstract:
This invention relates to the manufacture of compacts of ceramic composition, cermets, and other high hardness materials by applying explosive shock during exothermic sintering of such powders.