Abstract:
A simple and reproducible preparative method for the fabrication of surface-chemical gradients is described herein. Surface-chemical gradient films are prepared by using a liquid front in relative motion to the substrate (e.g. immersion by a linear-motion drive or the use of a spreading droplet) to gradually expose substrate samples to very dilute solutions of adsorbates. As demonstrated by XPS, the self-assembled monolayer gradients produced in this way display a high packing density. This method can be used in the preparation of other gradients of various chemical or biochemical functionalities in one or two dimensions. Such gradients can be used in a wide variety of applications in such diverse areas as cell motility studies, nanotribology research, and high-throughput screening.
Abstract:
This invention describes methods of synthesis and applications of planarized photonic crystals. Provided are simple, quick, reproducible and inexpensive methods that combine self-assembly and lithography to achieve the first examples of vectorial control of thickness, structure, area, topology, orientation and registry of colloidal crystals that have been patterned in substrates for use in lab-on-chip and photonic chip technologies. 1-, 2 and 3-D colloidal crystals patterned either on or within substrates can be used for templating inverted colloidal crystal replica patterns made of materials like silicon as well as building micron scale structural defects in such colloidal crystals. These photonic crystals can form the basis of a range of optical devices that may be integrated within photonic chips and coupled to optical fibers and/or waveguides to enable development of highly compact planarized optically integrated photonic crystal devices and circuits for use in future all-optical computers and optical telecommunication systems.
Abstract:
Functionalized polymer surfaces having reactive moieties thereon are contacted with stamps having ligands adsorbed thereto, the ligands also comprising reactive moieties. The reactive moieties of the functionalized surfaces and the ligands form covalent bonds, thus providing a method of microstamping polymer surfaces directly with ligands such as biological ligands. Using this method, devices such as tissue culture plates with polymer surfaces that are microstamped directly with ligands can be made.
Abstract:
A process and apparatus for processing a monolayer film and transferring the monolayer film to a substrate are provided. In accordance with one embodiment of the present invention, a process for transferring a monolayer film to a substrate is provided comprising the steps of: (i) providing a water-based carrier media defining an upper surface; (ii) introducing process particles on the upper surface of the carrier media, wherein the molecules are dissolved in a solvent and the particles and the solvent are insoluble in the carrier media; (iii) evaporating the solvent such that a non-cohesive monolayer film of the particles is formed on the upper surface of the carrier media; (iv) decreasing a degree of void incorporation in the monolayer film of particles by compressing a dimension of the non-cohesive film along the upper surface of the carrier media, and sonicating the carrier media to form micro-bubbles in the carrier media, wherein the compression and the sonication contribute to a decreased degree of void incorporation in the film of process particles; and (v) transferring the film of particles to a surface of the substrate. The steps of compressing and sonicating may be executed concurrently.
Abstract:
A method for forming a molecular film includes the steps of: coating a surface of a substrate having active hydrogen atoms on its surface with a coating solution containing a silane-based compound having at least one reactive group selected from the group consisting of a chloro group, an alkoxy group and an isocyanate group; and effecting an elimination reaction between the active hydrogen atoms on the surface of the substrate and reactive groups of the silane-based compound, thereby covalently bonding the silane-based compounds to the surface of the substrate. The substrate is supplied to a chamber in which an atmosphere is maintained at a low water vapor density. The surface of the substrate is coated with a coating solution containing the silane-based compound and a solvent by using a transfer element. A dehydrochlorination reaction is effected between the active hydrogen atoms and the chloro groups of the silane-based compounds. Thereafter, any coating solution containing unreacted silane-based compounds after coating is removed inside or outside the chamber.
Abstract:
The present invention is related to a method for treating a silica-coated substrate, comprising the steps of : - providing a substrate having a silica layer on its surface, - modifying an accessible surface of said silica layer by bringing the substrate into contact with at least one silazane agent so as to obtain a covalently bound single molecular layer on said accessible surface. Monofunctional or polyfunctional silazane agents can be used in the method. The invention is equally related to a substrate comprising a silica layer provided with a single molecular silane-modified layer.
Abstract:
Disclosed is a process for forming a patterned fluoropolymer film on a substrate by raised relief printing a fluoropolymer solution with a patterned raised relief printing plate, and drying the solvent from the solution to form the patterned fluoropolymer film. Such fluoropolymer films are useful as antireflective or hydrophobic layers on substrates used in optical displays.
Abstract:
An elastomeric stamp (10) is provided, which has a bulk surface (12) from which protruding features (14, 14') extend. A barrier layer (20) covers the bulk surface (12) and the protruding features (14, 14'). After applying an ink solution to the elastomeric stamp (10) and drying the elastomeric stamp (10), the elastomeric stamp (10) is brought into contact with a surface (42) of a first substrate (40). The surface (42) of the first substrate (40) has a high affinity with the ink molecules (32), which is utilized to effectively remove the ink molecules (32) from the contact surfaces (16, 16') of the protruding features (14, 14'). Subsequently, the elastomeric stamp (10) is brought into contact with the surface (52) of a second substrate (50). Ink molecules 32 are transferred from the edges (18, 18') of the protruding features (14, 14') to the surface (52) of a second substrate (50), thus forming an ink pattern in the form of a selfassembled monolayer on this surface (52). The patterning method of the present invention allows for the formation of high-definition ink patterns on a substrate (50) using a wide variety of inks.
Abstract:
The present invention is directed towards a method and means for molecularly patterning a surface to promote the patterned attachment of a target adherent. In some preferred embodiments the target adherent is a biological cell, but it can more generally be a biological or chemical species for which attachment at specific sites is desired. The method generally involves using a stamp to microcontact print a first type of molecule on the surface. With the stamp remaining in situ, the process then involves fluidic patterning of a second type of molecule through selected openings defined by selected recesses in the stamp and the surface itself. The second type of molecule should have an adhesion property relative to the target adherent that is complementary to that of the first type of molecule. The stamp is removed only after both the first and second types of molecules have been transferred to the surface.
Abstract:
Functionalized polymer surfaces having reactive moieties thereon are contacted with stamps having ligands adsorbed thereto, the ligands also comprising reactive moieties. The reactive moieties of the functionalized surfaces and the ligands form covalent bonds, thus providing a method of microstamping polymer surfaces directly with ligands such as biological ligands. Using this method, devices such as tissue culture plates with polymer surfaces that are microstamped directly with ligands can be made.