Abstract:
Methods and apparatuses for assembling, launching, recovering, disassembling, capturing, and storing unmanned aircraft (140) and other flight devices or projectiles are described. In one embodiment, the aircraft (140) can be assembled from a container (111) with little or no manual engagement by an operator. The container (111) can include a guide structure to control motion of the aircraft components. The aircraft (140) can be launched from an apparatus that includes an extendable boom (103). The boom (103) can be extended to deploy a recovery line (853) to capture the aircraft (140) in flight. The aircraft (140) can then be returned to its launch platform, disassembled, and stored in the container (111), again with little or no direct manual contact between the operator and the aircraft (140).
Abstract:
Methods and apparatuses for cable launching airborne devices (e.g., unmanned aircraft) are disclosed. In one embodiment, an apparatus includes an elongated structure, e.g., a tower, boom or derrick. At least one flexible elongated member (e.g., a cable or rope) can be attached toward one end to the structure and toward another end to the ground or another structure to form an elongated launch path. A cradle, which can carry the airborne device, can also be movably attached to the flexible elongated member and can be accelerated along the launch path. As the cradle decelerates, the aircraft can be released into flight.
Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft (150) can be launched from an apparatus that includes a launch carriage (120) that moves along a launch axis. A gripper (180) carried by the launch carriage can have at least one grip Portion (181) in contact with the aircraft while the launch carriage accelerates along the launch axis. The at least one grip portion can move out of contact with the fuselage of the aircraft as the launch carriage (120) decelerates, releasing the aircraft (150) for takeoff.
Abstract:
A missile comprises a propulsion system, a passageway (1) for delivering air to the propulsion system and a ducting element (9) associated with the passageway (1). The ducting element (9) has a ducting surface for ducting air into the passageway (1), and the ducting element (9) is rotatable, about an axis (13) that is aligned, or more preferably co-axial, with the axis (19) of the passageway (1), from a stowed position in which the ducting surface is received in the passageway (1), to a deployed position in which the ducting surface protrudes from the passageway (1) to duct air into the passageway.
Abstract:
An aircraft capable of thrust-borne flight can be automatically retrieved, serviced, and launched using equipment suitable for use on a small vessel, or at a base with similarly limited space or irregular motion. For retrieval, the aircraft drops a tether, and pulls the tether at low relative speed into contact with a horizontal guide. The tether is pulled across the guide until the guide is captured by a hook or other end effector. The tether length is then adjusted as necessary, and the aircraft swings on the guide to hang in an inverted position. Translation of the tether along the guide then brings the aircraft to a docking carriage, in which the aircraft parks for servicing. For launch the carriage is swung upright, the end effector is released from the guide, and the aircraft thrusts into free flight. A full ground-handling cycle can thus be accomplished automatically with simple and economical apparatus. It can be used with low risk of damage, and requires only moderate accuracy in manual or automatic flight control.