Abstract:
Polyethylene-based resin foamed particles are obtained having good productivity, achieve an increase in foaming ratio, and in which a miniaturization of the average cell diameter is suppressed. A polyethylene-based resin in-mold-foam-molded body using the foamed particles is reduced in yellowing of the surface of the molded body and has favorable surface beauty (surface smoothness). The foamed particles contain, as a base resin, a polyethylene-based resin composition containing 1000 ppm or more and 4000 ppm or less in total of one or more compounds selected from the group consisting of antioxidants, metal stearates, and inorganic substances and 50 ppm or more and 20000 ppm or less of hydrophilic compounds, in which the Z average molecular weight is 30×104 or more and 100×104 or less, the surface layer film thickness is 11 μm or more and 120 μm or less, and the open-cell ratio is 12% or less.
Abstract:
A process for producing expanded foam beads from pellets comprising at least one biodegradable polyester. The process comprises (i) producing a suspension comprising pellets in an aqueous suspension medium, (ii) impregnating the pellets present in the suspension from step (i) with at least one physical blowing agent by heating the pellet suspension to a depressurization temperature IMT, with stirring, to provide pellets laden with blowing agent in the suspension medium, and (iii) depressurizing the suspension obtained in step (ii) and cooling the depressurized suspension with a liquid aqueous coolant, in order to obtain the expanded foam beads. The blowing agent can be added in step I, or in step ii during the heating phase or following the heating phase. Following the heating phase, the suspension is maintained at a temperature in the range from IMT minus 5° C. to IMT plus 2° C. for 3 to 100 minutes, and the ratio of aqueous coolant to suspension medium is at least 0.3. The invention further relates to expanded foam beads obtained by the process and to moldings that are produced from the expanded foam beads.
Abstract:
Conductive polypropylene-based foamed resin particles foamed particles includes a resin composition containing 100 parts by weight of a polypropylene-based resin, 17.6 parts by weight to 33.4 parts by weight of conductive carbon black, and 0.1 parts by weight to 3.0 parts by weight of a water-soluble organic substance. The resin composition has a melting point (Tm) of 145° C. to 155° C., as measured by a differential scanning calorimetry (DSC) method, and has a temperature difference (ΔT) of 50° C. or more between the melting point (Tm) and a crystal melting start temperature (Tl) in a DSC differential scanning calorimetry (DSC) curve.
Abstract:
A process for production of expanded thermoplastic elastomer beads in the presence of a gaseous medium that surrounds thermoplastic elastomer beads. The process comprises a) an impregnating step, in which the gaseous medium has an impregnating temperature Ta, and the absolute pressure of the gaseous medium is greater than ambient pressure, the thermoplastic elastomer beads impregnated with a blowing agent, b) an expanding step, in which the thermoplastic elastomer beads expand as they are exposed to a pressure reduction at a first expanding temperature Tb, and c) optionally a fusing step, in which the expanded thermoplastic elastomer beads are fused together at a fusing temperature Tc to form at least one shaped part.
Abstract:
A method for producing a multilayer molded body for the heat insulation of buildings, for which foamable or pre-foamed polymer particles for forming a layer are used. The foamable or pre-foamed polymer particles are at least partially coated with an organic binding agent, and are bonded in a mold having at least one plate made of expanded or extruded polystyrene rigid foam for carrying out a final foaming process. The invention furthermore relates to a multilayer molded body for the heat insulation of buildings.
Abstract:
A process for the production of expanded foam beads that are prepared from pellets comprising polyester mixture comprising a) from 50 to 99% by weight, based on components a and b, of a biodegradable polyester based on aliphatic, or a mixture of aliphatic and aromatic,dicarboxylic acids and an aliphatic diol, and b) from 1 to 50% by weight, based on components a and b, of polylactic acid, the process comprising the following steps: (i) providing an aqueous suspension of the polyester pellets, (ii) impregnating the pellets in the suspension of step (i) with at least one physical or chemical blowing agent to provide blowing-agent-loaded pellets in suspension, wherein the impregnation of the at least one blowing agent includes heating the mixture to a depressurization temperature IMT with stirring, and (iii) depressurizing the suspension obtained in step (ii) to provide the expanded foam beads. The at least one blowing agent is added to the suspension in step (i), or in step (ii) during the heating phase, or immediately after the heating phase, and following the heating of step (ii), the suspension is maintained at a temperature in the range from IMT minus 5° C. to IMT plus 2° C. for a period of 3 to 100 minutes. The invention further relates to expanded foam beads obtained by the process, and to the production of moldings from the expanded foam beads.
Abstract:
A composite resin expanded molded article comprising: 100 parts by mass of an ethylene-vinyl acetate copolymer; and 100 to 400 parts by mass of a polystyrene-based resin, wherein the composite resin expanded molded article has an average cell diameter D of 100 to 500 μm and an average cell membrane thickness T of 1 to 5 μm.
Abstract:
An in-mold expanded molded product of the present invention includes expanded polypropylene resin particles comprising a polypropylene resin composition containing an aliphatic diethanolamine fatty acid ester and an aliphatic diethanolamine in a total content of not less than 0.1 part by weight but not greater than 5 parts by weight with respect to 100 parts by weight of polypropylene resin and the expanded polypropylene resin particles.
Abstract:
An electrostatic dissipative, polypropylene-based resin expanded bead containing electrically conductive carbon black, having an apparent density of 10 to 120 kg/m3 and formed of a base resin which includes a polypropylene resin forming a continuous phase, and a polyethylene resin forming dispersed phases dispersed in the continuous phase, with the carbon black being unevenly distributed to the dispersed phases side. The polyethylene resin is an ethylene homopolymer or a copolymer of ethylene and C4 to C6 α-olefin and a weight ratio of the polypropylene resin to the polyethylene resin is 99.5:0.5 to 65:35. A molded article obtained by in-mold molding of such expanded beads exhibits electrostatic dissipative properties with a surface resistivity in the range of 1×105 to 1×1010Ω in a stable manner.
Abstract:
There is provided polyvinylidene fluoride resin expanded beads which have a high expansion ratio, do not shrink easily, and are capable of obtaining a molded article of the expanded beads that is excellent in mold reproducibility and dimensional stability. The polyvinylidene fluoride resin expanded beads include a polyvinylidene fluoride resin as a base resin, in which a flexural modulus of the polyvinylidene fluoride resin is 450 MPa or more, a melt flow rate (MFR) of the polyvinylidene fluoride resin is 1 g/10 min or more at 230° C. and 2.16 kg load, an apparent density of the expanded beads is 25 to 150 g/L, and a closed cell content of the expanded beads is 80% or more.