Abstract:
A porous polybenzimidazole (PBI) particulate resin is disclosed. This resin is easily dissolved at ambient temperatures and pressures. The resin is made by: dissolving a virgin PBI resin in a highly polar solvent; precipitating the dissolved PBI in a bath; and drying the precipitated PBI, the dried precipitated PBI being porous. The porous PBI resin may be dissolved by: mixing a porous PBI resin with a highly polar solvent at ambient temperatures and pressures to form a solution.
Abstract:
A para-oriented polyamide porous film comprising a fibril having a diameter of not more than 1.mu., with fibrils planarly arranged as a network or nonwoven fabric and laminated in a layer, the thermal linear expansion coefficient at 200.degree.-300.degree. C. within .+-.50.times.10.sup.-6 /.degree.C. and 30-95% vacant spaces. Also, a battery separator using the porous film. Also, a production process of: (a) forming a film-like material from a solution containing 1-10% of a para-oriented aromatic polyamide having an inherent viscosity of 1.0-2.8 dl/g and 1-10% of a chloride of an alkali metal or an alkali earth metal in a polar amide or polar urea solvent; (b) maintaining the film-like material at not less than 20.degree. C. and not more than -5.degree. C. to deposit the para-oriented aromatic polyamide; and (c) immersing the film-like material in an aqueous or alcoholic solution to elute the sovlent and chloride of the alkali metal or alkali earth metal, then drying to obtain the para-oriented aromatic polyamide porous film. The film has uniformity and fine vacant spaces, which cannot be accomplished by a nonwoven fabric. Characteristics of a para-aramid (e.g., high heat resistance, high rigidity, high strength, etc.) are used.
Abstract:
Porous polymeric structures are provided along with a method to make such structures comprising heat-induced phase separation of a polymeric solution exhibiting a lower critical solution temperature.
Abstract:
Porous, distensible, gel-like membranes which in tubular form are suitable as implants, e.g., vascular prostheses and a process for the preparation thereof is described. The membranes are formed by a spraying, phase-inversion technique which employs thermodynamically unstable polymer solutions and is accomplished by separately spraying the unstable solution and a nonsolvent onto a rotating surface. Prostheses from the highly porous tubular membranes have shown a high degree of patency and completeness of the healing process and are useful for direct implantation in the body or for extracorporeal vascular accesses.
Abstract:
A process for forming a porous polymer film formed by allowing a solvent to evaporate from a solution of polymer containing water and alcohol. It is possible to form a porous polymer film in which the size and distribution of the pores are uniformalized. Also described is a process for producing a composite film in which the pores of the porous polymer film are filled with a functional low molecular substance such as liquid crystal or dye so that the dispersion diameter of the functional low molecular substance and the distribution of the same are uniformalized. In the production of the above-mentioned porous polymer film, the size of the pores on the porous polymer film can be controlled by controlling the humidity of the forming atmosphere or the water content in the solution of polymer. It is therefore possible to obtain a fixed film having superior electrical and optical characteristics, by forming a composite film through filling the pores of the thus obtained porous polymer film with a functional low molecular substance such as liquid crystal or dye and providing electrodes on the composite film.
Abstract:
Porous cellulose beads are prepared by distributing droplets of a solvent mixture containing a cellulose derivative into an aqueous solution to form porous beads which are then washed and hydrolyzed to form porous cellulose beads. The porous cellulose beads, which may be cross-linked, if desired, by suitable treatment, are useful carriers to which enzymes can be immobilized.
Abstract:
Method of preparing temperature resistant exhaust oxidation catalysts suitable for use in land vehicle exhaust systems comprising a porous ceramic base impregnated with suitable oxidizing agents and the resulting catalysts. The porous ceramic base is prepared from a ceramic powder filled, plasticized polyolefin.
Abstract:
An anisotropic membrane is provided having excellent mechanical properties combined with good permeation characteristics which comprises a vinyltriorganosilane polymer or copolymer consisting of a dense layer, of average thickness between 0.01 and 10 Mu , and a porous layer with open pores, of thickness up to 500 Mu in which the volume of the interstitial spaces in the porous layer represents 20 to 80 percent of the total volume of the membrane.
Abstract:
Polymer matrix composite comprising a porous polymeric network; and a plurality of thermally conductive particles distributed within the polymeric network structure; wherein the thermally conductive particles are present in a range from 15 to 99 weight percent, based on the total weight of the thermally conductive particles and the polymer (excluding the solvent); and wherein the polymer matrix composite has a density of at least 0.3 g/cm 3 ; and methods for making the same. The polymer matrix composites are useful, for example, in electronic devices.