Abstract:
The present disclosure relates to electrode assemblies, membrane-electrode assemblies and electrochemical cells and liquid flow batteries produced therefrom. The electrode and membrane-electrode assemblies include (i) a porous electrode having a first major surface with a first surface area, Ae, an opposed second major surface and a plurality of voids; (ii) a discontinuous transport protection layer, comprising polymer, disposed on the first major surface and having a cross-sectional area, Ap, substantially parallel to the first major surface; and (iii) an interfacial region wherein the interfacial region includes a portion of the polymer embedded in at least a portion of the plurality of voids, a portion of the porous electrode embedded in a portion of the polymer or a combination thereof; and wherein 0.02Ae ≤ Ap ≤ 0.85Ae and the porous electrode and discontinuous transport protection layer form an integral structure. The disclosure further provides methods of making the electrode assemblies and membrane-electrode assemblies.
Abstract:
A thermal management assembly comprises an electrochemical cell, a heat sink, and a thermal pathway comprising a thermally interruptible interface interposed therebetween the electrochemical cell and the heat sink. The thermal pathway comprises an expandable material comprising intumescent particles. If heated to at least a first onset temperature, the expandable material expands and causes at least partial shear delamination at the first thermally interruptible interface. A composite thermal management article comprises a first layer comprising an expandable material comprising intumescent particles and a second layer comprising a thermal conductor material. The first and second layers contact each other at a thermally interruptible interface. If heated to at least a first onset temperature, the expandable material expands and causes at least partial shear delamination at the thermally interruptible
Abstract:
Method of making a polymer matrix composite comprising a porous polymeric network structure; and a plurality of particles distributed within the polymeric network structure, the method comprising: combining a thermoplastic polymer, a solvent that the thermoplastic polymer is soluble in, and a plurality of particles to provide a slurry; forming the slurry in to an article; heating the article in an environment to retain at least 90 percent by weight of the solvent, based on the weight of the solvent in the slurry, and inducing phase separation of the thermoplastic polymer from the solvent to provide the polymer matrix composite.
Abstract:
The present disclosure relates membrane-electrode assemblies and electrochemical cells and liquid flow batteries produced therefrom. The membrane-electrode assemblies include a first porous electrode; an ion permeable membrane, having a first major surface and an opposed second major surface; a first discontinuous transport protection layer disposed between the first porous electrode and the first major surface of the ion permeable membrane; and a first adhesive layer in contact with the first porous electrode and at least one of the first discontinuous transport protection layer and the ion permeable membrane. The first adhesive layer is disposed along the perimeter of the membrane-electrode assembly. The first porous electrode and first discontinuous transport protection layer, without the presence of the first adhesive layer, are not an integral structure and the membrane-electrode assembly is an integral structure
Abstract:
The present disclosure relates to porous electrodes and electrochemical cells and liquid flow batteries produced therefrom. The disclosure further provides methods of making electrodes. The porous electrodes include polymer, e.g. non-electrically conductive polymer particulate fiber, and an electrically conductive carbon particulate. The non-electrically conductive, polymer particulate fibers may be in the form of a first porous substrate, wherein the first porous substrate is at least one of a woven or nonwoven paper, felt, mat and cloth. The porous electrode may have an electrical resistivity of less than about 100000 µOhm•m. The porous electrode may have a thickness from about 10 microns to about 1000 microns. Electrochemical cells and liquid flow batteries may be produced from the porous electrodes of the present disclosure.
Abstract:
A heat-removing sheet includes a plurality of endothermic particles and a chemically cured or radiation cured resin binding the endothermic particles together. The heat-removing sheet includes the endothermic particles at greater than 60 weight percent, has a flexural modulus of less than 3000 MPa and a flexural strength of greater than 0.15 MPa. The heat-removing sheet is a single free-standing layer.
Abstract:
Method for active battery management to optimize battery performance. The method includes providing signal injections for charging and discharging of a battery. The signal injections include various charging and discharging profiles, rates, and endpoints. Response signals corresponding with the signal injections are received, and a utility of those signals is measured. Based upon the utility of the response signals, data relating to charging and discharging of the battery is modified to optimize battery performance and to determine when to discharge the battery into a power grid in order to return power to the grid in exchange for an economic benefit such as a payment or rebate from a utility company.
Abstract:
A polymer matrix composite comprising a porous polymeric network; and a plurality of endothermic particles distributed within the polymeric network structure, wherein the endothermic particles are present in a range from 15 to 99 weight percent, based on the total weight of endothermic particles and the polymer (excluding any solvent); and wherein the polymer matrix composite has an endotherm of greater than 200 J/g; and methods for making the same. The polymer matrix composites are useful, for example, as a filler, thermal energy absorbers, and passive battery safety components.
Abstract:
A separator for an electrochemical cell includes a base layer configured to block electronic flow and allow ionic flow between a positive electrode and a negative electrode. The base layer has a first major surface and a second major surface. The separator further includes a layer of an exfoliatable material disposed on either or both of the first and second major surfaces. The layer of the exfoliatable material is provided on the base layer at an average thickness of between 1 and 500 nanometers. The layer of the exfoliatable material is binder-free.
Abstract:
A battery system includes a plurality of battery cells and a heat exchanger including a plurality of channels for transporting fluid. The channels extend generally along a first direction and are arranged along an orthogonal second direction. Each channel in the plurality of channels has a major surface disposed to contact the fluid. An integrally formed polymeric sheet extending along the first and second directions includes at least a portion of the major surface of each channel in the plurality of channels. A major surface of the heat exchanger is in thermal contact with a major surface of the plurality of battery cells.