Abstract:
This invention relates to long non-coding RNAs (IncRNAs), libraries of those ncRNAs that bind chromatin modifiers, such as Polycomb Repressive Complex 2, inhibitory nucleic acids and methods and compositions for targeting IncRNAs. d
Abstract:
The invention features a method for inhibiting growth of a cancer cell by contacting the cell with a composition of a ZNFN3A1 siRNA. Methods of treating cancer are also within the invention. The invention also features products, including nucleic acid sequences and vectors as well as to compositions comprising them, useful in the provided methods. The invention also provides a method for inhibiting of tumer cell, for example liver or colon cancer cell, particularly HCC or colorectal adenocarcinoma.
Abstract:
The invention features a method for inhibiting growth of a cancer cell by contacting the cell with a composition of a ZNFN3A1 siRNA. Methods of treating cancer are also within the invention. The invention also features products, including nucleic acid sequences and vectors as well as to compositions comprising them, useful in the provided methods. The invention also provides a method for inhibiting of tumer cell, for example liver or colon cancer cell, particularly HCC or colorectal adenocarcinoma.
Abstract:
Provided herein are H1.0K180me2 antibodies, H1.0K180me2 proteins, and H1.0K180me2 peptides and methods of use for diagnostics and therapeutics. These H1.0K180me2 antibodies, H1.0K180me2 proteins, and H1.0K180me2 peptides may be used in the treatment of methylated H1.0-related diseases or conditions in an individual. These H1.0K180me2 antibodies, H1.0K180me2 proteins, and H1.0K180me2 peptides may also be used for the detection and quantification of a histone H1.0 protein or fragment thereof, comprising a dimethylated lysine at lysine residue 180 (H1.0K180me2); such compositions and methods are useful for detecting replicative senescence, DNA damage, genotoxic stress, radiation exposure, Alzheimer's disease, are useful for monitoring therapeutic regimens, patient stratification, drug screening, and may serve as a marker of biological aging in a system.
Abstract:
The disclosure relates to methods and compositions for reactivating a silenced FMR1 gene. In some aspects, methods described by the disclosure are useful for treating a FMR1-inactivation-associated disorder (e.g., fragile X syndrome).
Abstract:
Provided herein are fusion proteins comprising a catalytically inactive Cas9 domain and an effector domain. The fusion proteins of the present invention can be used to, for example, produce epigenetic modifications at target chromatin sites. Nucleic acids and expression vectors encoding the fusion proteins, as well as cells comprising the fusion proteins, are also provided herein.
Abstract:
A method for promoting the reprogramming of a non-cardiomyocytic cell or tissue into cardiomyocytic cell or tissue comprising is carried out by contacting a non-cardiomyocytic cell or tissue with a modulator of histone methyltransferase activity or expression.
Abstract:
The present invention provides methods and compostions to improve the efficiency of somatic cell nuclear transfer (SCNT) and the consequent production of nuclear transfer ESC (ntESC) and transgenic cells and/or non-human animals. More specifically, the present invention relates to the discovery that trimethylation of Histone H3-Lysine 9 (H3K9me3) in reprogramming resistant regions (RRRs) in the nuclear genetic material of donor somatic cells prevents efficient somatic cell nuclear reprogramming or SCNT. The present invention provide methods and compositions to decrease H3K9me3 in methods to improve efficacy of SCNT by exogenous or overexpression of the demethylase Kdm4 family and/or inhibiting methylation of H3K9me3 by inhibiting the histone methyltransferases Suv39h1 and/or Suv39h2.
Abstract:
The present invention relates to a pharmaceutical composition comprising a histone-lysine N-methyltransferase EZH2 (enhancer of zeste homolog 2) inhibitor and an enhancer of interferon-gamma receptor activity. The invention also relates to method of treating a patient having cancer, comprising administration of the pharmaceutical composition.