Abstract:
The present invention includes a nontwisted composite tether comprising one or more composite rods encased in a jacket and a method for manufacturing same. A portion of the rods may be bundled into one or more strands, provided however that the rods comprising the strands are not twisted into twisted strands in the assembled nontwisted tether. Such untwisted strands, if any, additionally are not twisted relative to each other. Temporary and/or permanent buoyancy may be to the tether. The present invention includes methods for preparing, transporting, and installing a composite tether on a floating platform. The tether, preferably assembled at a waterfront, is launched into the water and towed to an offshore installation site, where the tether is upended and connected via a bottom end connector on the tether to an anchor foundation in the seabed and connected a top end connector on the tether to the floating platform.
Abstract:
The structural cable has a bundle of substantially parallel tendons contained in at least one plastic protective sheath section. The plastic material of the sheath section extends between the tendons to form a coherent matrix for spacing the tendons. The cable may be used as a pre-stressing cable, a stay cable or a carrying cable for suspension bridges.
Abstract:
A new form of construction for synthetic cables used for the anchoring of floating platforms in offshore oil production is described. A desirable requisite for this application is that the durability of the cable is not affected by deterioration of its strong core by virtue of the aggressive mechanical action of particles of the sea bed which might penetrate the cable and reach its core. For this purpose a layer (2) to protect the core (1) comprising a strip of polymer material placed in helical fashion which permits the passage of water and prevents the passage of particles of the sea bed towards the core (1) is placed between the cable core (1) and its outer braided protective layer (2).
Abstract:
A hybrid cable having a core and a wrap; the core made from a carbon fiber yarn or bundle of carbon fiber strands or yarns; and the wrap made of a plurality of metal wires helically wrapped around the core, the plurality of metal wires laid side by side without crossing each other. The fibers, yarns, or core may be treated with polymeric sizing, adhesive, or binder. The wire may be steel and may have a coating such as brass or zinc plating, or a polymeric coating or treatment. The hybrid cable is useful for reinforcing composite articles such as belts, track, or hose.
Abstract:
The invention relates to a hoisting rope (2,2') for a hoisting apparatus, the hoisting rope (2,2') having a longitudinal direction (l), thickness direction (t) and width direction (w), and comprising a group (G) of load bearing members (3) made of composite material comprising reinforcing fibers (F) embedded in polymer matrix (m); and a coating (4) encasing said group (G) of load bearing members (3); wherein said load bearing members (3) extend in an untwisted manner inside the coating (4) parallel with each other as well as with the longitudinal direction (l) of the rope (2,2') throughout the length thereof, said load bearing members (3) being substantially larger in width direction than in thickness direction of the rope (2,2') and stacked against each other in thickness direction (t) of the rope (2,2'). The invention also relates to an elevator comprising said hoisting rope (2,2').
Abstract:
There is disclosed a method of forming an eye end termination on a rope having a core comprising a plurality of multi-strand subropes, and a rope having a core comprising a plurality of multi-strand subropes and at least one eye end termination. In one embodiment, a method of forming an eye end termination (16) on a rope (10) having a core (12) is disclosed. The rope comprises a plurality of multi-strand subropes (14) each of a first strength, and the method comprising the steps of: coupling a pair of subropes ( 14) in the rope core ( 12) together using a multi-strand coupling rope ( 18) of a second strength which is greater than said first strength, to thereby form at least part of the eye end termination (16). The step of coupling the pair of subropes (14) together comprises splicing a first portion of a coupling rope (18) to one of the subropes in the pair of subropes, and splicing a second portion of the coupling rope to the other one of the subropes in the pair of subropes.
Abstract:
A security device has a flexible strap (26) with a lock unit (28) attached at each end. The strap (26) comprises a plurality of longitudinally extending multi-filament cables or ropes (2) arranged in a substantially planar array embedded in an elastomeric material (4). The cables or ropes (2) have a coating of primer for creating a bond with the elastomeric material (4). The primer may be restricted to the external surface of the cables or ropes (2), or some of the surfaces of the filaments may be free of primer. This facilitates relative movement of the filaments during flexure or compression of the strap (26). Moreover, an extrusion process for manufacturing the strap (26) including a priming station (12) is disclosed.