Abstract:
An apparatus for determining the weight of a payload (44) in a bucket (24) of a machine (20) where the bucket (24) is attached to a chassis (26) of the machine (20) by a linkage. The apparatus comprises an energy storage device (82) for storing potential energy of the bucket (24), payload (44), and linkage when the bucket (24) is moved from a first suspended position to a second suspended position. A mechanism (86) provides physical data corresponding to a physical change in the energy storage device (82) caused by storage of the potential energy and a processor (116) calculates the weight of the payload (44) using the physical data.
Abstract:
Bei einem Hydrospeicher mit einem Speichergehäuse in Form eines Rohres (1), in dem ein in dessen Axialrichtung (7) bewegbares Trennelement, vorzugsweise ein Trennkolben (9), beidseits an es angrenzende Druckräume (15) voneinander trennt, und bei dem das Rohr (1) an zumindest einem Ende durch ein deckelartiges Abschlußteil (5) abgeschlossen ist, das eine Anlagefläche für die Verbindung mit dem betreffenden Endrand des Rohres (1) aufweist, weist die Anlagefläche einen Flächenteil in Form einer axial ins Innere des Rohres (1) vorspringenden Ringfläche (39) zur formschlüssigen Abstützung der Rohrwand gegen Radialkräfte sowie eine eine Erstreckung in Radialrichtung aufweisende Ringfläche (41) zur formschlüssigen Abstützung der Rohrwand gegen Axialkräfte auf.
Abstract:
Die Erfindung betrifft einen Kolbenspeicher, mit einem axial beweglichen Kolben (8) in einer Gehäusebohrung (5), mit einer zwischen dem Kolben (8) und der Gehäusebohrung (5) angeordneten Dichtung (4), die innerhalb der Gehäusebohrung (5) fixiert ist und mit einem Deckel (6) zum Verschluss der Gehäusebohrung (5). Die Gehäusebohrung (5) ist zur einfachen Aufnahme der Dichtung (4) als eine in Richtung des Deckels (6) im Durchmesser erweiterte Stufenbohrung ausgebildet.
Abstract:
Bei einem Kolbenspeicher mit einem Speichergehäuse in Form eines Zylinderrohres 1, in dem ein Trennkolben 15, der zwei Arbeitsräume 5 und 6 voneinander trennt, in Axialrichtung innerhalb eines Kolbenhubbereiches 19 des Zylinderrohres 1 verfahrbar ist, das an beiden axialen Enden durch einen Verschlussteil 7 abgeschlossen ist, von denen zumindest einer durch Verformen eines sich an den Kolbenhubbereich 19 anschliessenden Umformbereiches 9 der Wand des Zylinderrohres 1 als damit einstöckiger Teil ausgebildet ist, ist im Inneren des Zylinderrohres 1 an der Stelle des Übergangs vom Kolbenhubbereich 19 zum Umformbereich 9 ein die Bewegung des Trennkolbens 15 vor Erreichen des Umformbereiches 9 begrenzender Anschlagkörper 25 vorgesehen.
Abstract:
The invention relates to a hydraulic fluid accumulator comprising a housing (1), whose interior is subdivided into three chambers (2, 3, 4), whereby the first chamber (2) is filled with a gas and separated from the second chamber (3) by a first media separation element (6). Said second chamber is filled with a liquid and is separated from the third chamber (4), which is also filled with a liquid and is connected to a hydraulic line (5), by a second media separation element (7). To guarantee an effective separation of the media within the hydraulic fluid accumulator and thus a significant increase in its functional safety, the invention is characterized in that the second media separation element (7) is embodied by a metal piston (8, 80) which delimits a space that can be deaerated (9, 90) in the housing (1).
Abstract:
An improved hydraulic accumulator is introduced wherein a valve mechanism (3) is used to seal a hydraulic fluid before the pressure charged piston (1) reaches the end of the accumulator to minimize the loss of compressed gas by eliminating the pressure differential when the piston (1) is fully extended, thereby prolonging the fatigue life of the accumulator vessel. Reduction of the pressure loading on the vessel will also prolong the life of the piston seals and metal bellows (8) effectively extending the accumulator life and effectively allowing design for weight reduction and preservation of the integrity of the complete hydraulic or pneumatic system.
Abstract:
A compact hydraulic aggregate for drive slip-regulated braking systems has several hydraulic, mechanical and/or electrically actuated functional elements arranged on a reception body, such as accumulator, valve (1, 1'), pressure generator (5) and driving elements (6), several pressure medium ducts (4, 5, 16) for inteconnecting the functional elements, establishing a hydraulically switchable connection between at least one pressure medium supplier (14) and a pressure medium consumer (19), and a control device connectable by electric conductors to the valve (1, 1') and driving elements (6). The valve elements (1, 1') are arranged in several valve reception bores (2, 2') of the valve reception body (3) which receives a first and a second row of valves (x, y). Between both diametrally opposed rows of valves (x, y) are provided several pressure medium bores (4) for inteconnecting the valve elements (1, 1') and bores (7, 8) for receiving the pressure generator (5) and dribing element (6). Additional co-axially arranged reception bores (9, 10, 11) open into the valve reception body (3) outside both rows of valves (x, y).
Abstract:
An ultra-sound testing device for gas pressure accumulators is used to test a predeterminable set position that can be taken by a movable separating element (20) inside an accumulator (10) that can be filled with gas and connected to a fluid circuit. The separating element (20) has at least one testing body associated with a visible mark (34) which indicates the set position of the separating element (20), and on the basis of which an ultra-sound testing device provided for the respective testing body can be set on the accumulator (10). This testing device allows a plurality of accumulators of the same type to be tested for their predeterminable gas pressure set value, which corresponds to the gas pre-filling pressure, by means of a single hand apparatus. This kind of test is economical and achieves reliable results.
Abstract:
The reservoir (10) has a cylinder (11) and a separating piston (13) arranged to slide therein. The piston separates a pressure medium storage chamber (15) from a gas chamber (14) in the cylinder (11). The separating piston (13) is sealed against the cylinder (11) by at least two rings (20 and 21) arranged at a distance apart axially on the periphery of the piston. Between the piston rings (20 and 21) is a collection chamber (22) from which opens a drilling (23) in the piston (13). The drilling (23) opens into the gas chamber (14) and can be closed off by a return valve blocking the passage from the gas chamber into the collection chamber (22). When the storage chamber (15) is emptied, pressurised gas and liquid conveyed with it from the gas chamber (14) into the collection chamber (22) are fed back into the gas chamber (14) via the drilling (23) on the opening of the return valve (27) as a result of being allowed to pass through the piston ring (20) on the gas chamber side. This lengthens the useful life of the pressure medium reservoir (10).