Abstract:
A monitoring device includes a first aperture plate, a second aperture plate, and a photodiode. The first aperture is disposed in a light path of a light beam emitted by a light source and includes a first aperture arranged such that a portion of the light beam having maximum light intensity passes and a reflecting portion that reflects the light beam as a monitoring light beam. The second aperture plate is disposed in a light path of the monitoring light beam and includes a second aperture that shapes a beam diameter of the monitoring light beam. The photodiode receives the monitoring light beam.
Abstract:
A monitoring system for an lithographic system is disclosed. In particular, the monitoring system can be utilized in an extreme ultraviolet lithographic system. In a monitoring system according to the present invention, a plurality of detectors are positioned to receive radiation from a pattern of positions on a mirror that is part of the lithographic system. In some embodiments, the plurality of detectors may be positioned on the mirror. In some embodiments, the plurality of detectors may be positioned behind the mirror and receive radiation through holes formed in the mirror. In some embodiments, radiation from the pattern of positions may be reflected by facets into the detectors.
Abstract:
A method and apparatus for braking an AC motor in the higher portion of its speed range includes substantially reducing flux before applying reverse torque commands to brake the motor. A DC link bus regulator is employed to prevent increases in bus voltage and frequency.
Abstract:
The present invention relates to an optical beam detection device for detecting deviation in the optical axis of light beams from a reference optical axis, the optical beam detection device provided with a converging member for converging the light beams; a light receiving surface that is disposed near the position where light beams that have an optical axis that coincides with the reference optical axis are converged by the converging member; an optical path deflector for deflecting light beams that have an optical axis that deviates from the reference optical axis, after they have passed through the converging member; and a light detecting element for detecting the light beams that have been deflected by the optical path deflector.
Abstract:
A hemispherical detector comprising a plurality of photodetectors arranged in a substantially contiguous array, the array being substantially in the shape of a half-sphere, the half-sphere defining a closed end and an open end, the open end defining a substantially circular face. Also provided is a method for constructing a hemispherical detector comprising the steps of making a press mold of the desired shape of the hemispherical detector, pouring a material into the press mold to form a cast, finishing the cast to remove any defects, coating the cast with a coating material, and attaching a plurality of photodetectors to the cast.
Abstract:
A luminous flux measuring apparatus includes an integrating hemisphere which has a hemisphere shape and an inner wall. The inner wall has a light diffusing material applied thereto. A flat mirror is installed to cover the first opening of integrating hemisphere. A second opening is located at the center of the flat mirror and the window has the same configuration of longitudinal cross section of the illuminant to be measured. A light detector which has a light-intercepting window is located inside the integrating hemisphere. Finally, the flux measuring apparatus includes a means for holding the illuminant in the window of the mirror at the center of curvature of the integrating hemisphere.
Abstract:
A two-stage light collector, including a first stage which admits a scanning beam and a second stage which is optically connected to the first stage and has a light detector therein. The first stage has a shape which re-images diffusely scattered radiation from a target on which the radiation impinges. The first stage directs light toward an entrance aperture in the second stage which indirectly reflects light toward the detector associated with the second stage.
Abstract:
Method of and apparatus for measuring thermal radiation geometric configuration factors - any such factor being that fraction of the total radiant energy emitted from an energyradiating surface which is incident on an energy-receiving surface. The method includes the steps of forming an image of the projected area of an energy-radiating surface at a selected location along an energy-receiving surface, making a photographic reproduction of such image, repeating the image-forming and image-reproduction steps at a plurality of selected locations along such energy-receiving surface, providing a configuration factor grid for subdividing any such image into weighted areas equivalent to known thermal radiation geometric configuration factors, and inspecting each photographic reproduction with such grid to measure the area of the image thereon in terms of its radiation configuration factor, thereby enabling all such factors to be averaged to derive a value for the entire energy-receiving surface. The apparatus includes an image-forming assembly comprising primary and secondary mirrors of hemispherical configuration for collecting and forming an image of the energyradiating surface as the area thereof is projected onto the primary mirror, and further comprising an intermediate optical system for receiving such formed image as redirected thereto by the secondary mirror and for transmitting to and focusing such image at an image plane for photographic reproduction.
Abstract:
An optical instrument including means for selecting one of several magnifications of an image being viewed, the selective magnification means being positioned in a collimated light path between an objective lens and a viewing lens and without change of conjugate distances therebetween; also an aperture stop located at one conjugate plane of a relay lens, the other conjugate plane being the nodal plane of the objective lens, which serves as a light-attenuating means without interference with the viewing optical system or without affecting the field being measured.
Abstract:
Advanced sensor evaluation and test apparatus comprises a vacuum chamber with an inner cryoshroud, housing an on-axis optical parabolic collimator, a radiant energy source assembly having an output aperture located in the focal plane of the collimator, a calibration monitor consisting of a Cassegrainian type radiometer that occupies one portion of the collimated radiant energy beam and which forms an image of the source on a bolometer, and a pair of scanning mirrors directing energy from another portion of the collimated beam into the entrance aperture of the optical sensor under test. In addition, a background radiant energy generator can direct radiant energy simulating elevated radiation background to the sensor under test which, in turn, forms an enlarged image of the background source in its own detector plane. One version of the source assembly includes at least one blackbody radiation source of variable aperture and temperature with a chopper operating to provide modulated radiation which is projected into an integrating sphere coupled with a source projector. An adjustable dual reflector with one specularly and one diffusely reflecting surface is mounted inside the integrating sphere and can be rotated to predetermined orientations to function in either a specularly reflecting mode or diffusely reflecting mode. In a third mode of operation, the mirror is rotated into an inactive orientation in which it does not intercept the beam entering the integrating sphere. This is the integrating sphere mode of operation. Another version of the source assembly includes at least one blackbody radiation source providing radiation to an integrating sphere coupled with a radiation guide (pipe). The radiation guide can be either a single or dual guide (pipe) and is cooperatively structured to operate with selected transmission patterns (transparent portions) on a movable disc sector positioned at the end of the guide.