Abstract:
Imaging systems may include camera modules that include an array of image sensors. An image sensor may include multiple image pixel arrays arranged in rows and columns, multiple control circuits for operating the image pixels of that image sensor, and shared readout circuitry for reading out the image pixels of the image pixel arrays of that image sensor. Each control circuit may be operable to select rows of image pixels that extend across a row of image pixel arrays. Shared readout circuitry may include one or more line buffers configured to temporarily store image data captured by image pixels in the selected rows of image pixels. Shared readout circuitry may include selection circuitry configured to readout image data from groups of associated pixels located in separate image pixel arrays. An imaging system may include processing circuitry for processing the image data from each group of pixels.
Abstract:
A pulse oximetry measurement system uses a pseudo-random noise generator to stimulate one or more light emitting diodes (LEDs). The light amplitudes from these LEDs, after passing through a part of a body, are detected by a phototransistor or photodiode and digitized with an analog-to-digital converter (ADC). The digitized ADC light amplitude values are re-correlated with the outgoing pseudo-random noise stimulus. Spread spectrum techniques are known for their noise mitigation properties, and ability to pass multiple signals through the same medium without interference. Thus, these measurements can be performed substantially simultaneously with minimal interference from each other. The pulse oximetry measurement system correlates the measured light intensities using pseudo-random noise generation and phase division multiplexing, and computes the measured and correlated peak- to-peak detected light amplitudes to obtain a ratio between these light amplitudes for determining oxygen saturation in the blood, and may also be used for heart rate monitoring.
Abstract:
A method of auto-calibrating light sensor data of a mobile device includes, obtaining, by the mobile device, one or more reference parameters representative of light sensor data collected by a reference device. The method also includes collecting, by the mobile device, light sensor data from a light sensor included in the mobile device, itself. One or more sample parameters of the light sensor data obtained from the light sensor included in the mobile device are then calculated. A calibration model is then determined for auto-calibrating the light sensor data of the light sensor included in the mobile device based on the one or more reference parameters and the one or more sample parameters.
Abstract:
본 발명은 패키지된 광센서 어레이 모듈 보정방법에 관한 것으로, 본 발명에 따른 패키지된 광센서 어레이 모듈 보정방법은 일정 특성 값을 가지는 표준 광원에서 방출되는 광에 대한 광 센서 어레이의 통계적 특성을 분석하여 대표값을 추출하고, 상기 추출된 대표값에 따른 상기 측정 값의 제1 보정값을 산출하는 단계; 및 적용 광원에서 방출되는 광 또는 상기 적용 광원에 대한 형광 반응에 의해 방출되는 광에 대하여, 제1 보정값에 의해 보정된 상기 광 센서 어레이의 측정 값에 대한 제2 보정값을 산출하는 단계를 포함한다.
Abstract:
A calibration method comprising, for each of one or more light sensors: (a) under influence of one or more substantially non-zero illumination levels in the target environment, using the light sensor to measure the sensed light level corresponding to each of these one or more illumination levels; (b) receiving a template light level value corresponding to each of the one or more illumination levels, representing the light level at a target location in the target environment substantially removed in space from the location of the light sensor, each of the one or more template light level values being assumed for the environment rather than measured by a light meter; and (c) determining a relationship between the sensed light level and the light level experienced at the target location, based on an evaluation of the one or more sensed levels relative to the one or more template light level values.
Abstract:
A method and an apparatus for extracting a desired signal (118) from a combined signal (112) are disclosed, wherein the combined signal (112) exhibits a magnitude (110) which comprises a sum (154) of the magnitude (110) of the desired signal (118) and the magnitude (110) of an additional signal (122). Within at least one time interval (134, 134', 134"), wherein the magnitude (110) of the desired signal (118) remains below a threshold (136), at least one value of the magnitude (110) of the combined signal (112) within the time interval (134, 134', 134") is stored in a storage device (166) as at least one stored value (170, 170', 170"), followed by subtracting the stored value (170) from the magnitude (110) of the combined signal (112), by which difference (178) the magnitude (110) of the desired signal (118) is acquired in a period (138, 138', 138") outside the time interval (134, 134', 134"), wherein the magnitude (110) of the desired signal (118) stays at least partially above the threshold (136). Preferably used for acquiring a magnitude (110) of a desired signal (118) which comprises an electromagnetic signal, preferably a light signal, more preferably a fluorescence signal, wherein the desired signal (118) is superimposed by an additional signal (122), wherein the additional signal (122) is preferably influenced by ambient conditions, in particular by ambient light.
Abstract:
The averaged pulse energy (J) of a Pulsed Type Laser Source can be measured by several types of commercial laser energy meters, such as pyroelectric detector or thermopile sensor, the spectral responsivity and the time/frequency related response properties of which are compatible with those of the Pulsed Type Laser Source. These Commercial Laser Energy Meters, regardless of sensor/detector type, should be calibrated against the working standards calibrated in a national (or an international) traceability chain relying on primary standards on the highest level having the lowest uncertainty in realizations of the fundamental SI units. FCIS based-LEMCS designed in this invention accomplishes both of the above proficiencies of measuring the averaged pulse energy of the Pulsed Type Laser Source and calibrating the Commercial Laser Energy Meters, which are traceably to primary level standards. FCIS based-LEMCS contains an integrating sphere having a novel port and an interior design and a series of mechanical choppers having separate Duty Cycles, each of which is rotated by an electrical motor in FCIS based-LEMCS, used for generating a chopped type laser, called as Chopped Type Laser Source, in order to provide the reference and averaged pulse energy for traceable calibration of Commercial Laser Energy Meters. With this invention, in addition to generating the reference and averaged pulse energy to be used during the calibration of Commercial Laser Energy Meters to be performed by means of FCIS based-LEMCS, the peak pulse energies of the Pulsed Type Laser Source and the Chopped Type Laser Source, which is a strict part of FCIS based-LEMS and which is used for producing the reference averaged pulse energy in the calibration of Commercial Laser Energy Meters, are also measured by FCIS based-LEMCS, traceable to Electrical Substitution Cryogenic Radiometer (ESCR) in primary optical watt scale (W), to 133 Cs (or 87 Rb) Atomic Frequency Standard in time scale t (s), and to direct current unit (A) realized with Quantum Hall - primary resistance standard (ohm) and DC Josephson primary voltage standard (V). With this configuration presented as a preferred embodiment, the averaged pulse energy measurements are performed and achieved for a range extending from 16.5 p J to 100 mJ.
Abstract:
A fiber optic sensor interrogation system with inbuilt passive power limiting capability that provides improved safety performance for use in explosive atmospheres.