Abstract:
A hyperspectral imaging system having an optical path. The system including an illumination source adapted to output a light beam, the light beam illuminating a target, a dispersing element arranged in the optical path and adapted to separate the light beam into a plurality of wavelengths, a digital micromirror array adapted to tune the plurality of wavelengths into a spectrum, an optical device having a detector and adapted to collect the spectrum reflected from the target and arranged in the optical path and a processor operatively connected to and adapted to control at least one of: the illumination source; the dispersing element; the digital micromirror array; the optical device; and, the detector, the processor further adapted to output a hyperspectral image of the target. The dispersing element is arranged between the illumination source and the digital micromirror array, the digital micromirror array is arranged to transmit the spectrum to the target and the optical device is arranged in the optical path after the target.
Abstract:
A gas detection system comprising a case having a hollow chamber, a gas input port, a gas output port, a radiation emitting device, and a photo detector. The gas input port may be disposed on the case for a test gas flowing into the chamber. The gas output port may be disposed on the case for the test gas flowing out of the chamber. The radiation emitting device may be disposed on the case and operated in a surface plasmonic mode or a waveguide mode for emitting a narrow bandwidth thermal radiation light source with multi-peak wavelengths into the chamber, wherein the multi-peak wavelengths may comprise a first absorption wavelength and a second absorption wavelength of the test gas. The photo detector may be disposed on the case for detecting light intensity of the light source passing through the chamber to determine the concentration of the test gas.
Abstract:
A spectral imaging system for collecting spectral information of a two dimensional heterogeneous objects while in motion relative to the imaging system without the use of a spectrograph, filters or any dispersive optics. The system includes a pulsed light source tunable in wavelength for producing short pulses of wavelength tuned light at a plurality of selected narrow band wavelengths within a spectral range and one or more optical components for conveying or directing the short pulses of light to a two dimensional region that is substantially stationary with respect to the imaging system and through which the two dimensional target is moving. The system also includes a many pixel camera synchronized with the tunable pulsed light source. The camera is adapted to detect light in the selected narrow band wavelengths produced by the tunable pulsed light source and reflected from or transmitted through the two dimensional target in motion relative to the imaging system and to provide image frame information with each frame at a defined wavelength band. A processor processes information from said tunable light source and said camera and to produce multi-spectral images of the target.
Abstract:
The invention relates to a variable-spectrum solar simulator for characterising photovoltaic systems. The simulator can be used to obtain a spectrum adjusted to the solar spectrum, both for a standard spectrum or a real spectrum adjusted to local irradiation conditions. The simulator also allows the spatial-angular characteristics of the sun to be reproduced. The invention comprises: a broad-spectrum light source, the flux from which is emitted through an aperture; an optical system which collimates the primary source; a system which disperses the beam chromatically; an optical system which forms an image of the dispersed primary source at a given position, at which a spatial mask is placed in order to filter the received irradiance spectrally; an optical system which captures the filtered spectrum and returns, mixes and concentrates same in a secondary source with the desired spectral, angular, and spatial characteristics; an optical system which collimates the secondary source such that it reproduces the angular characteristics of the sun; and a control system.
Abstract:
A self-collimator planar spectroscopy shaping device for chirped pulse amplification (CPA): uses a spectrum decomposing system with CTSI construction, a spectrum synthesizing system with CTSI structure that is symmetrical to the decomposing structure, and a spectrum shaping system including an aperture and a planar reflector for spectrum shaping function design. The device accomplishes the following functions: firstly decomposing the spectrum of a chirped temporal pulse laser to a spectral domain; then shaping the spectrum in the spectral domain; finally synthesizing un-shiftily this shaped spectrum in the spectral domain into a temporal chirped pulse with a designed shape. The device has features of small size of concave reflector, easy fabrication, compact construction, little laboratory space needed, and cheap in cost, which it can be different types of configuration for different circumstance application, which it can be not only utilized in a general laser spectrum shaping and spectrum modulation, but also can be utilized for a high energy and ultra-high peak-power laser system in chirped pulse amplification with a large caliber and with a chirped pulse bandwidth of a few nanometers.
Abstract:
A color processing apparatus according to the present invention is a color processing apparatus that calculates spectral reflectance including a fluorescent component in a sample under a target illuminant. The color processing apparatus includes first means for inputting, for each of a plurality of waveform types, spectral radiance including an excitation wavelength region and the amount of fluorescence in the sample corresponding to the spectral radiance; second means for determining, from spectral radiance of the target illuminant including the excitation wavelength region and the input spectral radiance and amount of fluorescence, the amount of fluorescence in the sample under the target illuminant; third means for inputting spectral reflectance excluding the fluorescent component in the sample; and fourth means for determining, by using the determined amount of fluorescence in the sample under the target illuminant and the input spectral reflectance excluding the fluorescent component in the sample, spectral reflectance including the fluorescent component in the sample under the target illuminant.
Abstract:
Computer program products comprising tangible computer-readable media having instructions that are executable by a computer to generate a customized spectral profile, which can be used to generate a corresponding filter. The instructions can comprise: generating a trial source spectrum; determining an uncorrected lamp source spectrum; calculating one or more optical indices using the trial source spectrum or the uncorrected lamp source spectrum; and optimizing one or more of the optical indices by varying the trial source spectrum to generate the customized spectral profile.
Abstract:
Method and arrangement for changing the spectral composition and/or intensity of illumination light and/or specimen light in an adjustable manner, wherein a spatial separation into radiation components of different polarization is carried out with a first polarizing device, a spectral, spatial splitting of at least one radiation component is carried out with first dispersion device, the polarization state of at least one part of the spectrally spatially split radiation component is changed, and a spatial separation and/or combination of radiation components of different polarization are/is carried out by a second polarizing device, wherein a spatial combination of radiation components which are changed and not changed with respect to their polarization state is advantageously carried out by a second dispersion device.
Abstract:
Methods for generating a customized spectral profile, which can be used to generate a corresponding filter, lamp or other type of illuminant. A trial spectrum is generated. A reference spectrum is determined or otherwise obtained. A SOURCE spectrum is determined or otherwise obtained. One or more optical indices are calculated using the trial spectrum and one or more of the optical indices are optimized by varying the trial spectrum to generate the customized spectral profile. A radiation force parameter can be used to minimize unsafe build-up of light in spectral regions. Adaptations of color rendering parameters can be used in the optimization process. Smoothing parameters can be used to enable easier design of filter structures. A reflectance camera can be used to measure reflectance data at one or more pixels of a digital representation of an object to be illuminated.
Abstract:
A device and method for controlling a plurality of individual light sources with varying spectra, wherein a desired resulting light spectrum with three manipulated variables representing a color standard is selected to serve as the basis along with an detected light spectrum to control the plurality of light sources with varying spectra in such a way that at least a part of the plurality of controllable light sources emits a resulting light spectrum that correspond to the desired light spectrum to at least a selectable level of accuracy.