Abstract:
A laser ablation tomography system includes a specimen stage for supporting a specimen. A specimen axis is defined such that a specimen disposed generally on the axis may be imaged. A laser system is operable to produce a laser sheet in a plane intersecting the specimen axis and generally perpendicular thereto. An imaging system is operable to image the area where the laser sheet intersects the specimen axis.
Abstract:
Systems for measuring optical properties of a specimen are disclosed. The systems are configured to sample signals related to the measurement of the properties of a specimen, and perform software-based coherent detection of the signals to generate resulting measurements are based on the signals acquired at substantially the same time instance. This facilitates the displaying or generating of the desired measurements in real time. In one configuration, the system is configured to direct a modulated light signal at a selected wavelength incident upon a specimen. In another configuration, the system is configured to direct a combined light signal, derived from a plurality of light signals at different wavelengths and modulated with different frequencies, incident upon a specimen. In yet another configuration, the system is configured to direct a plurality of light signals modulated with different frequencies incident upon different regions of a specimen.
Abstract:
A microlithographic projection exposure apparatus has a measuring device, by which a sequence of measurement values can be generated, and a processing unit for processing the measurement values. The processing unit has a processing chain which includes a plurality of digital signal processors. The first digital signal processor in the processing chain is connected to the measuring device to receive the sequence of measurement values. Each subsequent digital signal processor in the processing chain is connected to a respectively preceding digital signal processor in the processing chain. The digital signal processors are programmed so that each digital signal processor processes only a fraction of the measurement values and generates processing results therefrom, and forwards the remaining fraction of the measurement values to the respective next digital signal processor in the processing chain for processing.
Abstract:
A method for capturing hyperspectral images using a regular color camera. In the method, the camera takes multiple images of a scene, with the camera oriented differently for each image. For a camera carried by an aircraft or spacecraft, this allows hyperspectral imaging without the cost or weight of a hyperspectral camera.
Abstract:
An optical analysis tool includes an integrated computational element (ICE). The ICE includes a first hollow-core fiber. The first hollow-core fiber has a structure configured such that a spectrum of light guided by the first hollow-core fiber is related, over a wavelength range, to a characteristic of the sample.
Abstract:
A system of measuring hemoglobin and bilirubin parameters in a whole blood sample using optical absorbance. The system includes an optical-sample module, a spectrometer module, an optical fiber module optically connecting the optical-sample module to the spectrometer module, and a processor module. The optical-sample module has a light-emitting module having a LED light source, a cuvette and a calibrating-light module. The processor module receives and processes an electrical signal from the spectrometer module and transforms the electrical signal into an output signal useable for displaying and reporting hemoglobin parameter values and/or total bilirubin parameter values for the whole blood sample.
Abstract:
Disclosed is the detection of emulsions and microdispersions with an optical computing device. One disclosed method includes emitting electromagnetic radiation from an electromagnetic radiation source, optically interacting the electromagnetic radiation with a fluid and thereby generating fluid interacted radiation, detecting a portion of the fluid interacted radiation with a reference detector arranged within an optical channel of an optical computing device, generating a reference signal with the reference detector, and determining an emulsive state of the fluid based on the reference signal.
Abstract:
Examples embodiments of a removable optical assembly are disclosed. A removable optical assembly can be removably attached to a probe of an optical analytical instrument. The removable optical assembly can comprise a spherical optical element. An embodiment of the removable optical assembly can allow contact interrogation of a sample. In some embodiments, the removable optical assembly can comprise an internal optical element. In other embodiments, the removable optical assembly can comprise an external optical element. Manufacture of the removable optical assembly can comprise a monolithic embodiment or an assembled embodiment comprising a plurality of subassemblies. Embodiments of the removable optical assembly can be conical, cylindrical or planar is shape. The removable optical assembly can, in some embodiments, be consumable and/or disposable.
Abstract:
Multiple optical architectures based on photosensitive arrays are disclosed. The optical engines collect five dimensional data from the samples with three dimensional spatial information and temporal and spectral information simultaneously, in parallel from all channels, without optical scanning. The photosensitive arrays and/or last component of illumination system are in contact or close proximity of the sample surface. The application of optical engines to sensitive detection of species of interest in the complex reflecting and scattering matrix with the high concentration of interfering species is described. The optical engines are applicable to noninvasive, mobile monitoring of various species of interest in vivo and in vitro.
Abstract:
Optical computing devices including a light source that emits electromagnetic radiation into an optical train extending from the light source to a detector, a substance arranged in the optical train and configured to optically interact with the electromagnetic radiation and produce sample interacted radiation, a processor array arranged in the optical train and including a plurality of ICE arranged on a substrate and configured to optically interact with the electromagnetic radiation. The detector receives modified electromagnetic radiation generated through optical interaction of the electromagnetic radiation with the substance and the processor array. A weighting device is coupled to one or more of the ICE to optically apply a weighting factor to the modified electromagnetic radiation prior to being received by the detector, wherein the detector generates an output signal indicative of a characteristic of the substance based on beams of modified electromagnetic radiation.