Abstract:
A technique for forming a two-dimensional electronic spectrum of a sample includes illuminating a line within a portion of the sample with four laser pulses; where along the entire line the difference in the arrival times between two of the laser pulses varies as a function of the position and the difference in the arrival times between the other two pulses is constant along the entire line. A spectroscopic analysis may then be performed on the resulting pulsed output signal from the illuminated line to produce a single-shot two dimensional electronic spectroscopy.
Abstract:
Disclosed is an imaging apparatus including: a spectroscopic measurement section configured to measure a spectral characteristic of a subject; a spectral image capture section configured to capture a subject image separated into a plurality of colors through color separation to create a plurality of spectral images; and a color separation characteristic determining section configured to determine a color separation characteristic to be used for image capturing of the spectral image capture section, based on the spectral characteristic of the subject measured by the spectroscopic measurement section. The color separation characteristic determining section determines a count of color separations in the image capturing of the spectral image capture section and spectral bands corresponding to each of the color separations.
Abstract:
A spectrograph usable as a demultiplexer/detector in a wavelength division multiplexing optical system. The spectrograph comprises a planar waveguide and a detector array. The planar waveguide has a dispersive edge having an inwardly concave shape, an input edge, and a straight output edge. The dispersive edge has a reflective diffraction grating formed on it, the grating having a variable line spacing. An optical input signal comprising a plurality of different wavelength ranges enters the waveguide at the input edge, and travels through the waveguide and strikes the grating. The grating focuses the optical energy in each of the wavelength ranges at a focal spot at the output edge, the position of each focal spot being a function of wavelength. The detector array comprises a plurality of photodetectors positioned along a straight line, such that the photodetectors are positioned at the focal spots. Each photodetector therefore detects the optical energy in one of the input ranges. A stack of such planar waveguides may be assembled to form a multi-channel spectrograph.
Abstract:
A spectroanalytical system includes entrance aperture defining structure for receiving radiation to be analyzed along a first path; collimating structure in the first path for providing collimated radiation along a second path; fixed refraction structure in the second path for spatially separating (refracting) radiation in the second path in a first direction as a function of wavelength; fixed echelle grating structure in the second path for spatially separating the refracted radiation as a function of wavelength in a second direction orthogonal to the first direction and directing the orthogonally dispersed radiation in a beam along a third path that does not pass through the first refraction structure; and two-dimensional array detector structure for detecting the beam of orthogonally refracted radiation.
Abstract:
In a polychromator, the image plane or the focus line (28) is adapted optimumly to the plane of a detector (26), e.g. to a diode-array. At the same time, an optimum linear wavelength scale is obtained on the detector (26). To this end, an arrangement having a concave grating (14), and an imaging mirror (20) is provided. An optimizing method is described by which both curves can be optimized in converging steps by alternate variation of the distance b between concave grating (14) and mirror (20) and the asymmetry measure G' of the concave grating (14).
Abstract:
A lightweight, inexpensive device for adapting a spectrophotometer to perform the functions of a densitometer, including means for directing the light source from a spectrophotometer through a photographic plate, and means for moving the photographic plate across the beam of light.
Abstract:
The present disclosure generally relates to improvements to systems and methods for measuring the dynamic properties of scattering particles within a medium, including fluid flow. Specifically, the present disclosure relates to systems and methods for time-resolved diffuse correlation spectroscopy. This disclosure provides systems and methods for determining dynamics in a target medium. The systems and methods can utilize time-resolved diffuse correlation spectroscopy.