Abstract:
A portable small-object holding device, comprising: a housing, movable gripper jaws configured to grip and hold a small object; at least one hinge and at least one cog-wheel configured to enable rotating said at least one hinge around its longitudinal axis; and wherein the portable small-object holding device is adapted to enable illuminating the small object when being held within said portable small-object holding device, by a beam of light at least one wavelength. The inspection of the small-object is carried out after inserting the portable small-object holding device via an aperture comprised in a portable apparatus for inspecting small objects, and preferably engaging the portable small-object holding device with the portable apparatus for inspecting small objects.
Abstract:
An analyzer including a housing with a mutually adjacent first side and a second side, and an annular reagent holding part disposed within the housing is disclosed. An immunoassay method for measuring antigen or antibody of a measurement object contained in a sample and performed by the analyzer is also disclosed.
Abstract:
The present invention provides a substrate collecting device that includes a first stage on which a sheet is placed with a plurality of substrates facing downward, an sampler which carries out a predetermined operation on some of the substrates, which are disposed at predetermined positions, from above the first stage thereby to cause the substrates to come off from the sheet and fall, an optical system and a collector disposed below the first stage, and a second stage, which integrally moves the optical system and the collector in a horizontal direction. The second stage is capable of positioning the optical system and the collector at two positions at which the optical system or the collector is disposed substantially vertically below a predetermined position.
Abstract:
A capillary cell is described along with an arrangement and a method for receiving, positioning and examining a microscopic specimen, in particular a cleared fluorescent specimen with the help of a single-plane fluorescence microscope. The capillary cell is suitable for being positioned in a chamber volume and contains a capillary section, which comprises a wall. The wall encloses a specimen volume and is planar and transparent in at least some sections. In addition, the capillary cell includes an upper and a lower closure section, which are connected to the capillary section and which seal the capillary section. The specimen volume is separated from the chamber volume by the capillary section, the upper closure section and the lower closure section.
Abstract:
An optical measuring device including a sample placement portion for a measurement sample to be placed therein; a light source portion for emitting a measurement beam toward the measurement sample that is placed in the sample placement portion; and a detector for detecting sample information from a measurement sample that is disposed in the sample placement portion; a cover portion that is able to open and close, for accessing the interior of the sample placement portion, is formed on the sample placement portion; an optical element member for not transmitting light of at least a prescribed wavelength band within the measurement beam; and a driving mechanism that is linked mechanically with the opening and closing of the cover portion to move the optical element member.
Abstract:
The present invention provides a light beam measuring instrument that can securely receive light reflected by a sample. The light beam measuring instrument 1 includes an optical axis tilting mechanism 13 that includes a first tilting mechanism 131 and a second tilting mechanism 132. From the optical axis A1 of irradiation light beam emitted from a light beam source 112, the first tilting mechanism 131 tilts the optical axis A1 about the first tilting axis T1. The second tilting mechanism 132 tilts the optical axis A1 about the second tilting axis T2. The light beam measuring instrument 1 can receive the light reflected by the semiconductor chip C by means of operation of the optical axis tilting mechanism 13 even if the light reflected by the semiconductor chip C is tilted. Accordingly, this apparatus can securely perform measurement or inspection using the light beam.
Abstract:
A system includes a platform including one or more workstations and a microfluidic input device coupled to the one or more workstations. The microfluidic input device is adapted to receive a microfluidic device from a user. The system also includes a robotic device comprising a robotic arm and disposed on the platform. The robotic arm is capable of accessing the one or more workstations and is configured to transfer a plurality of sample solutions from a first spatial location to the microfluidic device when coupled to the microfluidic input device. The system further includes a multi-pixel image capturing device optically coupled to the microfluidic device and an image processing device operably coupled to the multi-pixel image capturing device. The multi-pixel image capturing device is adapted to capture a plurality of multi-pixel images. The image processing device is configured to receive the plurality of multi-pixel images.
Abstract:
Provided is a test system operable with a simplified structure. A test system includes a test device and a test device each of which transports and tests a sample. The test device includes a master control unit, which performs assignment of samples to the test device and the test device, and control of a transport operation of the sample assigned to the test device. The test device includes a slave control unit, which controls a transport operation of the sample assigned to the test device by the master control unit.
Abstract:
A capillary cell is described along with an arrangement and a method for receiving, positioning and examining a microscopic specimen, in particular a cleared fluorescent specimen with the help of a single-plane fluorescence microscope. The capillary cell is suitable for being positioned in a chamber volume and contains a capillary section, which comprises a wall. The wall encloses a specimen volume and is planar and transparent in at least some sections. In addition, the capillary cell includes an upper and a lower closure section, which are connected to the capillary section and which seal the capillary section. The specimen volume is separated from the chamber volume by the capillary section, the upper closure section and the lower closure section.
Abstract:
A system for performing one or more microfluidic processes includes an integrated fluidic device comprising a plurality of well regions and a plurality of control valves and a workflow manager. The system also includes a transfer robot adapted to transfer the integrated fluidic device between a plurality of stations in response to a series of instructions from the workflow manager and a first station comprising a dispensing robot adapted to dispense at least one of a plurality of sample solutions and at least one of a plurality of reagents into the integrated fluidic device. The system further includes a second station comprising a fluidic controller unit and a third station comprising an inspection station.