Abstract:
A plant sensor includes a light source section having first and second light emitters configured to irradiate the first and second measuring light toward the object to be measured, respectively, and a light receiver configured to receive reflected light from the object to be measured , and output light-receiving signals, a controller configured to control emission of the first and second light emitters at a different timing, an integrator configured to integrate the light-receiving signals, and output an integration signal, and a calculator configured to calculate, according to the integration signal, a reflection rate as a ratio of light volume of the reflected light of the first measuring light from the object to be measured to light volume of the first measuring light, a reflection rate as a ratio of light volume of the reflected light of the second measuring light from the object to be measured to light volume of the second measuring light, and obtains information regarding a growing condition of the object to be measured.
Abstract:
A method of detecting an optical change in a series of test assays producing detectable results at varying efficiencies, the method comprising the steps of: a) selecting a test assay from the series, the selected assay having a known end-point photoresponse efficiency and a known filter center wavelength; b) providing a variable-intensity flash lamp illuminator comprising a lamp, a set of multiple filters with pre-selected center wavelengths assigned to particular assays, and a circuit for activating the lamp and comprising a capacitor, a power source, and a variable output voltage converter connected to the source and having its variable voltage output connected across the capacitor, the lamp and the filters providing a known level of system efficiency as a function of the center wavelength of the filter; c) providing a predetermined relationship of levels of illuminating intensities from the lamp as a function of photoresponse efficiencies of the assays and the system efficiencies, in which the photoresponse efficiencies of the assays are inversely proportional to the lamp intensities and the intensities are proportional to the square of the voltages applied to the lamp; d) selecting from the relationship a voltage applied to the lamp, and hence an intensity of the lamp, that corresponds to the known photoresponse efficiency of the assay selected in step (a) and its system efficiency based upon the filter center wavelength for the assay; and e) thereafter exposing the assay to the selected illuminating intensity, so that less intensity is used for assays having either higher photoresponse efficiencies or center wavelengths with a higher system efficiency, or both, than is used for worst-case efficiency assays.
Abstract:
A colorimeter provides compensation for changes in the color signature of an object due to lamp aging. A current measuring circuit (95) measures current to the lamp (29) during an initial training of the colorimeter and stores a value I T indicative of the lamp current at training. When an object (5) is scanned by the colorimeter, lamp current is again sensed and assigned a value I S . Comparison between a sensed color signature and a stored color signature then occurs. Compensation is accomplished by modifying one of the two signatures by a ratio including I S and I T power.
Abstract:
A portable device for the quality control of vegetal products comprising a power supply (7) intended for powering a circular crown of lighting lamps (41) at the centre of which there is arranged the receiving objective of a spectrometer (45) provided with means (431) adapted for resting on the product to be checked, said spectrometer (45) being associated to a microprocessor (11) which provides the measurement data on display means (12); according to the invention, the lamps (41) are permanently powered, and in stand-by, at a reduced voltage (70), lower than the nominal voltage (71) delivered by the power supply (7), and instantaneously at the nominal voltage (71 supplied by the power supply (7) through a power circuit (8) whose activation is commanded and controlled by the microprocessor (11) in response to an activation signal generated by a button (10).
Abstract:
The present invention relates to a method for monitoring the filling of a capsule with a medicament, to a corresponding filling method, to the associated apparatuses, and to a computer program for controlling the method and the apparatus. In the monitoring method, after at least part of the capsule has been filled with a predefined filling mass of a predefined closed contour of the medicament, at least the filling mass in the part of the capsule after the filling operation is recorded using digital imaging in a first step, the contour of the filling mass in the part of the capsule is determined from the digital imaging recording in a second step, and the contour is analysed in a third step in order to assess the filling operation in comparison with the predefined contour. The invention provides for external influences on the image properties to be compensated for by controlling the optical system.
Abstract:
A gas detector (10) that is arranged to sense the concentration levels of target gases oxygen, methane, carbon monoxide, and hydrogen sulphide, within a gas sample from an environment surrounding the detector. The gas detector (10) comprises laser sources (12a-12d) that are arranged to transmit radiation through the gas sample at four target wavelengths that correspond approximately to the optimum absorption wavelengths of each of the target gases and an optical detector (16) that is arranged to sense the intensity of the radiation transmitted through the gas sample at each of the target wavelengths. A control system (22) generates representative concentration level information for the target gases based on the level of absorption of the radiation transmitted.
Abstract:
A light emitting apparatus has light emitting units. The light emitting units can be respectively provided with current densities, so that the light emitted by each of the light emitting unit has a light intensity, wherein the current densities are different from each other, or partial of the current densities are different from each other. A number of the light emitting units can be larger than or equal to four, all of the four lighting frequencies of the four light emitting units are different from each other, or partial of the four lighting frequencies of the four light emitting units are identical to each other, and the light emitting apparatus and the object under test rotate relative to each other. A light emitting method, a spectrum detection method and a lighting correction method are also illustrated for increasing SNR, correcting the light intensity or the spectrum signal.
Abstract:
An apparatus includes a pipe through which a multiphase fluid flows, with a transparent window structure formed in the pipe. A collimated light source emits light through the transparent window structure into the pipe having a wavelength at which a component of a desired phase of the multiphase fluid is absorptive. A photodetector is positioned such that the emitted light passes through the multiphase fluid in the pipe to impinge upon the photodetector. The photodetector has an actual dynamic range for collimated light detection. Processing circuitry is configured to continuously adjust a power of the collimated light source dependent upon an output level of the photodetector so as to cause measurement of the emitted light over an effective dynamic range greater than the actual dynamic range, and determine a property of the multiphase fluid as a function of the power of the collimated light source.