Abstract:
A photo-detector (122) generated signal (125) is measured as a sample set (192) comprising a long signal and a short signal. The short signal is scaled to the value of the long signal if the long signal exceeds a dynamic range (131) associated with the photo-detector (122). In one embodiment, the short signal is obtained during a short time interval that is at the approximate middle of a long time interval such that the short and long intervals share a common median time value (194). Given such symmetry, an approximately linear signal (190) yields a proportionality parameter between the long and short signals thereby allowing the short signal to be scaled. The proportionality parameter facilitates determination of an integration independent component of the photo-detector signal that should be removed from the measured long and short signals before scaling. A plurality of sample sets (260) can also be processed such that each sample set overlaps with its neighboring sample set, thereby increasing the effective number of sample sets.
Abstract:
The invention relates to a method for avoiding signal-saturation in the quantification of polynucleotide microarrays, a device, a computer program and data therefor. The invention quantitatively measures an optical property of a set of samples, said optical property relating to the concentration of the macromolecule to be determined, using an optical detector at two or more different detector gains. The invention uses an algorithm comprising 1) an equation which relates the real intensity to detector gain and measured intensity and 2) minimisation of said equation, and 3) two data matrices which are iteratively modified so as to exclude samples which are saturated, as judged by their predicted intensity. Each iteration of the algorithm improves the prediction and the matrices are concomitantly modified so as to re-include or exclude samples which are saturated. The invention discloses initialisation and normalisation procedures.
Abstract:
A method of detecting an optical change in a series of test assays producing detectable results at varying efficiencies, the method comprising the steps of: a) selecting a test assay from the series, the selected assay having a known end-point photoresponse efficiency and a known filter center wavelength; b) providing a variable-intensity flash lamp illuminator comprising a lamp, a set of multiple filters with pre-selected center wavelengths assigned to particular assays, and a circuit for activating the lamp and comprising a capacitor, a power source, and a variable output voltage converter connected to the source and having its variable voltage output connected across the capacitor, the lamp and the filters providing a known level of system efficiency as a function of the center wavelength of the filter; c) providing a predetermined relationship of levels of illuminating intensities from the lamp as a function of photoresponse efficiencies of the assays and the system efficiencies, in which the photoresponse efficiencies of the assays are inversely proportional to the lamp intensities and the intensities are proportional to the square of the voltages applied to the lamp; d) selecting from the relationship a voltage applied to the lamp, and hence an intensity of the lamp, that corresponds to the known photoresponse efficiency of the assay selected in step (a) and its system efficiency based upon the filter center wavelength for the assay; and e) thereafter exposing the assay to the selected illuminating intensity, so that less intensity is used for assays having either higher photoresponse efficiencies or center wavelengths with a higher system efficiency, or both, than is used for worst-case efficiency assays.
Abstract:
A method and fluorimeter for flashing a target at several different levels for detection of fluorescence by a PMT without blinding the PMT at the highest level. Two lamps are provided each of which is powered to flash at two different levels that are staged in energy from the lowest of four to the highest of four levels, and a shutter is provided to close off the PMT from exposure when an acceptable, detectable level of fluorescence is detected by the PMT.
Abstract:
A system and method to discriminate between a first preselected gas and at least one other preselected gas use of an absorption spectroscopy analyzer that includes a Herriott cell (10) and a temperature sensitive light source (14). The light source (14) operates at a temperature that emits a beam at a wavelength that corresponds to high absorption by a first preselected gas. When a predetermined level of this gas is detected in a gas sample, the analyzer changes the operating temperature of the light source to emit a beam at a wavelength that corresponds to high absorption by a second preselected gas. The second preselected gas can be a different isotope of the first preselected gas.
Abstract:
A photo-detector 122 generated signal 125 is measured as a sample set 192 comprising a long signal and a short signal. The short signal is scaled to the value of the long signal if the long signal exceeds a dynamic range 131 associated with the photo detector 122. In one embodiment, the short signal is obtained during a short time interval that is at the approximate middle of a long time interval such that the short and long intervals share a common median time value 194. Given such symmetry, an approximately linear signal 190 yields a proportionality parameter between the long and short signals thereby allowing the short signal to be scaled. The proportionality parameter facilitates determination of an integration independent component of the photo detector signal that should be removed from the measured long and short signals before scaling. A plurality of sample sets 260 can also be processed such that each sample set overlaps with its neighboring sample set, thereby increasing the effective number of sample sets.
Abstract:
An instrument for analysing a multiplicity of fluorescent dyes is disclosed, said instrument comprising a multiplicity of photodetectors, each having an adjustable gain, and a stored representation of pairwise functional relationships between measured fluorescence and photodetector gain for each of said photodetectors and for each of said fluorescent dyes. Preferably, the instrument is a flow cytometer. Furthermore, methods are disclosed for calculating compensation/quantitation for arbitrary sets of photodetector gain settings which do not require the analysis of additional setup samples.
Abstract:
A method of detecting an optical change in a series of test assays producing detectable results at varying efficiencies, the method comprising the steps of: a) selecting a test assay from the series, the selected assay having a known end-point photoresponse efficiency and a known filter center wavelength; b) providing a variable-intensity flash lamp illuminator comprising a lamp, a set of multiple filters with pre-selected center wavelengths assigned to particular assays, and a circuit for activating the lamp and comprising a capacitor, a power source, and a variable output voltage converter connected to the source and having its variable voltage output connected across the capacitor, the lamp and the filters providing a known level of system efficiency as a function of the center wavelength of the filter; c) providing a predetermined relationship of levels of illuminating intensities from the lamp as a function of photoresponse efficiencies of the assays and the system efficiencies, in which the photoresponse efficiencies of the assays are inversely proportional to the lamp intensities and the intensities are proportional to the square of the voltages applied to the lamp; d) selecting from the relationship a voltage applied to the lamp, and hence an intensity of the lamp, that corresponds to the known photoresponse efficiency of the assay selected in step (a) and its system efficiency based upon the filter center wavelength for the assay; and e) thereafter exposing the assay to the selected illuminating intensity, so that less intensity is used for assays having either higher photoresponse efficiencies or center wavelengths with a higher system efficiency, or both, than is used for worst-case efficiency assays.