Abstract:
An apparatus for measuring amylose and/or amylopectin content in rice. A near infrared light beam having its wavelength in a range of from about 1900 nm to about 2500 nm is applied to sample rice (5). A detector (26,27,28) receives light reflected from and/or transmitted through the sample rice (5), to generate signals representative of luminous intensity of the received light. A memory device (122) has stored therein content conversion coefficients set for the amylose and/or amylopectin. A calculation device (123) calculates the amylose and/or amylopectin content in the sample rice (5), based on the detecting signals from the detector (26,27,28) and the content conversion coefficients stored in the memory device (122). The calculated content is displayed by a display device (126,127).
Abstract:
Un appareil de remise à zéro automatique remet automatiquement à zéro un analyseur de gaz aux infra-rouges lorsque des conditions présélectionnées se produisent, afin d'indiquer l'état zéro en cas d'absorption nulle des rayonnements infra-rouges par un mélange de gaz en cours d'analyse. L'analyseur de gaz comprend une cellule d'échantillonage (11) qui contient un mélange de gaz que l'on veut analyser. Les rayonnements infra-rouges envoyés à travers la cellule d'échantillonnage (11) sont détectés à une longueur d'onde présélectionnée afin de produire un signal de détection. Un processeur de signaux sort des signaux systématiquement associés à la différence entre le signal de détection et un signal de référence. Pour la remise à zéro, la cellule d'échantillonnage (11) est remplie d'un gaz sensiblement non-absorbant des rayonnements infra-rouges à la longueur d'onde caractéristique respective. Un comparateur génère un signal d'erreur lorsque le signal de sortie diffère de zéro. Une commande de gain (DAC 21) commande automatiquement le niveau des signaux de détection afin de réduire le signal de sortie sensiblement à zéro lorsque le gaz non-absorbant remplit la cellule d'échantillonnage (11). Les conditions présélectionnées peuvent inclure l'écoulement d'une période de temps prédéterminée et une dérive de la température au-delß de limites prédéterminées.
Abstract:
57 A sensor-integrator circuit having a sensor for producing a current varying in accordance with the sensed parameter or a reference current source, a comparator having inverting and noninverting inputs and an output and charge storage device coupled to the inverting input. The circuit is energized to obtain a given positive steady state reset voltage, a reference voltage is applied to the noninverting input of a comparator which is less positive than the steady state voltage and integration is initiated solely by alternately applying the current from the sensor and the reference current to the inverting input of the comparator.
Abstract:
A method for detecting optical defects within a windshield. The method takes, as input, a digital image map of the intensity of optical power of a windshield, and provides, as output, a digital image map of optical defects. The method includes (a) an image processing of the digital image map of optical powers for detecting and delimiting regions that differs in intensity of optical power; (b) computing, for each detected regions, a representative geometric distance and a representative value of the optical power; (c) computing an image map of the detected regions for which the product between the representative geometric distance and the representative value of the optical power is equal or superior to 2.9·10−4.
Abstract:
Systems and methods here may be used for a setup of image capturing of a gemstone, such as a diamonds that are of high clarity grades. The present embodiments can provide methods to capture a diamond surface and internal clarity features from a diamond table and through and of other facets. Systems and methods may be used to convert gemstone dimension information into azimuth, slope, and distance information and adjust the motorized stage accordingly for surface imaging. Further, a calibration method can consider the offsets between design and actual system alignment. A calibration process can be used to compensate the offsets. Further, an additional conversion can be derived to compensate the offset caused by the geometry of the gemstone. The methods can automatically capture surface reflection images on facets of the gemstone and internal features taken through facets of the gemstone.
Abstract:
A method for measuring a characteristic of a thin film is disclosed. The method includes a) obtaining a measured spectrum from a target region on the substrate by using a spectroscopic ellipsometer, b) obtaining a physical model capable of obtaining an estimated parameter value related to the characteristic of the thin film through regression analysis of the measured spectrum, c) obtaining a machine learning model capable of obtaining a reference parameter value related to the characteristic of the thin film by using the measured spectrum, and d) obtaining an integrated model which uses an integrated error function capable of considering both of a first error function and a second error function, and obtaining an optimum parameter value through regression analysis of the integrated model.
Abstract:
Instruments, systems, and methods for measuring optical density of microbiological samples are provided. In particular, optical density instruments providing improved safety, efficiency, comfort, and convenience are provided. Such optical density instruments include a handheld portion and a base station. The optical density instruments may be used in systems and methods for measuring optical density of biological samples.
Abstract:
An apparatus for obtaining image data and functional data from a biological sample, the apparatus including: an interferometer configured to acquire interferometric information at a plurality of time points along an imaging plane for which at least one axis of the plane is at least partially along a depth or axial dimension that is based on radiations provided from a reference interfered with by the biological sample; and a processor configured to receive the interferometric information from the interferometer and configured to: process the interferometric information to generate an image of the biological sample along the imaging plane; determine frequency information based on the plurality of time points of the interferometric information, the frequency information reflecting temporal modulations induced by dynamic functions of the biological sample; generate a spatial map of the frequency information, and the spatial map of the frequency information indicating the dynamic functions of the biological sample.
Abstract:
A light source may illuminate a scene with amplitude-modulated light. The scene may include fluorescent material. The amplitude modulation may be periodic, and the frequency of the amplitude modulation may be swept. During the sweep, a time-of-flight sensor may take measurements of light returning from the scene. A computer may calculate, for each pixel in the sensor, a vector of complex numbers. Each complex number in the vector may encode phase and amplitude of light incident at the pixel and may correspond to measurements taken at a given frequency in the sweep. A computer may, based on phase of the complex numbers for a pixel, calculate fluorescence lifetime and scene depth of a scene point that corresponds to the pixel.
Abstract:
A cosmetic testing fixture is disclosed for evaluating the cosmetic condition of a used electronic device, comprising an enclosure for containing the used electronic device and a fixture that uses the relative amounts of reflected and scattered light off a surface of the used electronic device to determine if there are any cosmetic imperfections such as scratches or cracks on the surface.