Abstract:
The presently disclosed subject matter provides methods, systems, and computer program products for optimizing a probe geometry for spectroscopic measurement in a turbid medium. A probe geometry comprising one emitting entity for emitting electromagnetic radiation into a turbid medium and at least one collecting entity for collecting the electromagnetic radiation that has interacted with the turbid medium is selected. A simulation is performed with inputs of the probe geometry and a plurality of sets of optical property values associated with the turbid medium to generate output comprising optical parameter values measured by the probe geometry for each set of input optical property values. The measured optical parameter values are input to an Inversion algorithm to produce corresponding optical properties as output and are compared to reference values. The simulation and inversion steps are repeated and compared for a plurality of additional probe geometries and an optimal geometry is selected.
Abstract:
Optical computing devices including a light source that emits electromagnetic radiation into an optical train extending from the light source to a detector, a substance arranged in the optical train and configured to optically interact with the electromagnetic radiation and produce sample interacted radiation, a processor array arranged in the optical train and including a plurality of ICE arranged on a substrate and configured to optically interact with the electromagnetic radiation. The detector receives modified electromagnetic radiation generated through optical interaction of the electromagnetic radiation with the substance and the processor array. A weighting device is coupled to one or more of the ICE to optically apply a weighting factor to the modified electromagnetic radiation prior to being received by the detector, wherein the detector generates an output signal indicative of a characteristic of the substance based on beams of modified electromagnetic radiation.
Abstract:
Disclosed are systems and methods that use discriminant analysis techniques and processing in order to reduce the time required to determine chemical and/or physical properties of a substance. One method includes optically interacting a plurality of optical elements with one or more known substances, each optical element being configured to detect a particular characteristic of the one or more known substances, generating an optical response from each optical element corresponding to each known substance, wherein each known substance corresponds to a known spectrum stored in an optical database, and training a neural network to provide a discriminant analysis classification model for an unknown substance, the neural network using each optical response as inputs and one or more fluid types as outputs, and the outputs corresponding to the one or more known substances.
Abstract:
A method for analyzing biological specimens by spectral imaging to provide a medical diagnosis includes obtaining spectral and visual images of biological specimens and registering the images to detect cell abnormalities, pre-cancerous cells, and cancerous cells. This method eliminates the bias and unreliability of diagnoses that is inherent in standard histopathological and other spectral methods. In addition, a method for correcting confounding spectral contributions that are frequently observed in microscopically acquired infrared spectra of cells and tissue includes performing a phase correction on the spectral data. This phase correction method may be used to correct various types of absorption spectra that are contaminated by reflective components.
Abstract:
A system for predicting blood constituent values in a patient includes a remote wireless non-invasive spectral device, the remote wireless non-invasive spectral device generating a spectral scan of a body part of the patient. Also included are a remote invasive device and a central processing device. The remote invasive device generates a constituent value for the patient, while the central processing device predicts a blood constituent value for the patient based upon the spectral scan and the constituent value.
Abstract:
This invention refers to an imaging method and apparatus capable of performing non-destructive, in situ analysis of art-objects. The invention relays on the comparison of diffuse reflectance and/or fluorescence spectra (intensity vs. wavelength), of painting material models of known composition, with the intensities emitted and captured at the same wavelengths and for any spatial point of the art-object of unknown composition. This composition, performed for any spatial point of the area of interest, improves notably the diagnostic information and enables the analysis of heterogeneous art-objects.
Abstract:
Systems and methods using a spectrometer system for real-time automatic evaluation of tissue injury are described. A method of assessing an injury to tissue comprises reflecting an electromagnetic signal from the tissue to produce a reflected electromagnetic signal; producing spectral data pertaining to the intensities of individual wavelengths of the reflected electromagnetic signal; analyzing the spectral data to obtain a set of results; and providing an indication of the nature of the injury to the tissue based upon the set of results.
Abstract:
A particle image in a sample 63 is formed at an imaging position 56 by an objective lens 55 of a microscope, projected on the image picking up plane of a TV camera 58 via projection lens 57 and is subjected to photo-electric conversion. Image signals from the TV camera 58 are supplied to an image memory 75 via an A/D converter 74 as well as to an image processing control unit 76. Image signals outputted from the image memory 75 are supplied to a characteristic picking out unit 78 and there a plurality of characteristics of the particle concerned are picked out. The picked-out characterstics are supplied to the classification unit 79 and there classification of the sediment components is performed via a neural network with a learning capability. Accordingly, the classification unit 79 performs provisionally an automatic classification of the objective sediment components by making use of the inputted characteristic parameters. Whereby the device which allows accurate and fast automatic component particle analysis even for patient specimens containing a variety of components in high concentration is realized.
Abstract:
Systems and methods using a spectrometer system for real-time automatic evaluation of tissue injury are described. A method of assessing an injury to tissue comprises reflecting an electromagnetic signal from the tissue to produce a reflected electromagnetic signal; producing spectral data pertaining to the intensities of individual wavelengths of the reflected electromagnetic signal; analyzing the spectral data to obtain a set of results; and providing an indication of the nature of the injury to the tissue based upon the set of results.