Abstract:
Prototype reactor and method for the ammonia synthesis at atmospheric pressure. This invention relates to the ammonia production from its elements (N 2 and H 2 ) at atmospheric pressure. This was achieved in a solid state proton (H + ) conducting cell - reactor. Hydrogen was flowing over the anode (6) and was converted into protons that were transported through the solid electrolyte (4) and reached the cathode (5)(Pd) over which nitrogen was passing.
Abstract:
The invention provides a complex comprising at least one hydrophobic active agent, an ionic polymer comprising a repetitive unit of formula (I): wherein R1 represents a hydrogen atom or a straight or branched chain alkyl group, preferably a straight or branched chain alkyl group comprising from 1 to 6 carbon atoms, for example a methyl group; R2 represents a straight or branched chain alkyl group which is substituted by a group which may have a positive charge at a physiological pH wherein the ionic polymer is a homopolymer or a random copolymer, wherein the repetitive unit of formula (I) in a random copolymer comprises (dimethylamino)ethyl methacrylate, wherein the molar proportion of (dimethylamino)ethyl methacrylate repetitive units to the total number of repetitive units in a random copolymer is greater than 50%, and wherein the at least one hydrophobic active agent has a molecular weight of from 100 to 1500 g/mol; a complex for use in a method of medical treatment; a pharmaceutical composition; and a method of preparing a complex or pharmaceutical composition according to the invention which method comprises the steps of: (a) dissolving the hydrophobic active agent and the ionic polymer in one or more non-aqueous solvents to form the complex wherein the one or more non-aqueous solvents are miscible with water; and (b) progressively replacing the one or more non-aqueous solvents with water.
Abstract:
An acoustic sensor detects binding of a nucleic acid analyte in an impure liquid sample by measurement of the energy of the acoustic wave resulting from the binding of the nucleic acid target to the sensor surface. The analysis may be preceded by carrying out a nucleic acid amplification procedure in situ on a crude or impure biological sample and the analysis is tolerant of the presence of reagents or by-products of the amplification procedure, and also materials present from the initial biological sample.
Abstract:
2,6-bis(((1H-benzo[d]imidazol-2-yl)thio)methyl)pyridine and N2, N6-dibenzylpyridine-2, 6-dicarboxamide derivatives and related compounds as phosphoinositide 3-kinase (PI3K) inhibitors for treating cancer. The present invention relates to pharmaceutically active 2,6-bis((1H-benzo[d]imidazol-2-yl)thio)methyl)pyridine, N2,N6-dibenzylpyridine-2, 6-dicarboxamide and N2,N6-bis(3-hydroxyphenyl) pyridine-2, 6-dicarboxamide, as well as to derivatives thereof, and to structurally related compounds. These compounds are phosphoinositide 3-kinase inhibitors (PI3K) and useful in treating or preventing cancerous diseases. The invention further relates methods of manufacturing such compounds as well as to pharmaceutical compositions and formulations comprising such compounds, optionally together with other pharmaceutically active compounds. The invention further relates to a method for determining the activity of PI3Kalpha or PI3Kalpha mutants, which method includes: a) providing a solid phase which is functionalized by immobilization of GST-GRP1-molecules onto the solid phase, b) performing a PI3Kalpha or PI3Kalpha mutant catalyzed enzyme reaction to convert PIP2 to PIP3, c) adding competitor PIP3 carrying a detectable label or reporter molecule, and d) determining enzyme activity based on the amount of PIP3 obtained in step b) which competes with competitor PIP3 for binding to the functionalized solid phase.
Abstract:
A computer network-storage protocol system, including at least one initiator device having an initiator block layer and an initiator network layer interfacing with a first network driver; at least one target device having a target block layer and a target network layer interfacing with a second network driver; a plurality of network interface controllers (NICs) interfacing with the first network driver and the second network driver; a plurality of distinct channels, each channel establishing a connection between the initiator device and the target device and being configured to transmit packets between the initiator device and the target device, wherein each channel is mapped to only one NIC; and wherein the initiator block layer includes at least one request message buffer and at least one data message buffer.
Abstract:
APPARATUSES, METHODS AND SYSTEMS FOR ESTIMATING WATER DIFFUSIVITY AND MICROCIRCULATION OF BLOOD USING DW-MRI DATA (“AEW”) are disclosed herein. The apparatuses, methods and systems provide a computational framework for choosing and applying the most appropriate model in different regions of a heterogeneous area on a voxel-by-voxel basis. The apparatuses, methods and systems also configure an intravoxel-incoherent-motion (IVIM) model for estimating water diffusivity and microcirculation of blood in the capillary network from DW-MRI low b-value data. In one implementation, the method uses a small number of b-values (at least 3 in the b-value range of 0-300 s/mm2, increasing the upper bound of the low b-value range by one b-value in the absence of DW-MRI signal at 300 s/mm2 and is able to synthetically generate DW-MRI data corresponding at higher b-values using the derived IVIM equation. The method also accounts for estimating non-Gaussian diffusion parameter Kapp.
Abstract:
Method and devices using lasers to reduce reflection of transparent solids in the optical spectrum, coatings and devices employing transparent solids are disclosed. The lasers are used to shape surfaces of the transparent solid materials by raising the temperature of the material to around the melting temperature, and thereby generate desired target nanostructure two-dimensional antireflection flection pattern arrays on the surfaces. The laser fluence value, wavelength, repetition rate, pulse duration and number of consecutive laser pulses per focus spot are selected, and a desired focus spot distribution on the surface of the transparent solid material is identified. The transparent solid material is relatively translated to generate the desired nanostructure two-dimensional pattern array.
Abstract:
Method and devices using lasers to reduce reflection of transparent solids in the optical spectrum, coatings and devices employing transparent solids are disclosed. The lasers are used to shape surfaces of the transparent solid materials by raising the temperature of the material to around the melting temperature, and thereby generate desired target nanostructure two-dimensional antireflection flection pattern arrays on the surfaces. The laser fluence value, wavelength, repetition rate, pulse duraction and number of consecutive laser pulses per focus spot are selected, and a desired focus spot distribution on the surface of the transparent solid material is identified. The transparent solid material is relatively translated to generate the desired nanostructure two-dimensional pattern array.
Abstract:
A processor-implemented method for capturing and reproducing spatial sound. The method includes: capturing a plurality of input signals using a plurality of sensors within a sound field; subjecting each input signal to a short-time Fourier transform to transform each signal into a transformed signal in the time-frequency domain; decomposing each of the transformed signals into a directional component and a diffuse component; optimizing beamformer weights using vector based amplitude panning to determine an optimal directivity pattern for the diffuse component of each transformed signal; constructing a set of diffuse sound channels using the diffuse components of the transformed signals and the optimized beamformer weights; constructing a set of directional sound channels using the directional components of the transformed signals; and reproducing the sound field by distributing the directional and diffuse sound channels to a plurality of output devices.