Abstract:
An improved waveguide polymer electro-optic modulator/switch which is operated in a single mode and has an improved device characteristic compared to the optimized modulator/switch and is capable of enhancing a coupling efficiency with an optical fiber without an increase of the driving voltage, which includes a waveguide formed in one line, a signal electrode formed at an upped input side of the waveguide, to which signal electrode a signal voltage is applied as an upper electrode, and an absorption electrode formed at an upper portion of the waveguide for absorbing a higher order which are not easily absorbed by the signal electrode and for increasing a dissipation ratio.
Abstract:
This patent document provides optical processing and switching of optical channels based on mode-division multiplexing (MDM) and wavelength division multiplexing (WDM). In one implementation, a method is provided for processing different optical signal channels to include receiving different input optical signal channels in different optical waveguide modes and in different wavelengths; converting input optical signal channels in multimodes into single-mode optical signal channels, respectively; subsequent to the conversion, processing single-mode optical signal channels obtained from the different input optical signal channels to re-group single-mode optical signal channels into different groups of processed single-mode optical signal channels; and converting different groups of the processed single-mode optical signal channels into different groups of output optical signal channels containing one or more optical signal channels in multimodes multimode signals to direct the groups as different optical outputs.
Abstract:
A supercontinuum optical pulse source provides a combined supercontinuum. The supercontinuum optical pulse source comprises one or more seed pulse sources, and first and second optical amplifiers arranged along first and second respective optical paths. The first and second optical amplifiers are configured to amplify one or more optical signals generated by said one or more seed pulse sources. The supercontinuum optical pulse source further comprises a first microstructured light-guiding member arranged along the first optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said first optical path, and a second microstructured light-guiding member arranged along the second optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said second optical path. The supercontinuum optical pulse source further comprises a supercontinuum-combining member to combine supercontinuum generated in at least the first and second microstructured light-guiding members to form a combined supercontinuum. The supercontinuum-combining member comprises an output fibre, wherein the output fibre comprises a silica-based multimode optical fibre supporting a plurality of spatial modes at one or more wavelengths of the combined supercontinuum.
Abstract:
A supercontinuum optical pulse source provides a combined supercontinuum. The supercontinuum optical pulse source comprises one or more seed pulse sources, and first and second optical amplifiers arranged along first and second respective optical paths. The first and second optical amplifiers are configured to amplify one or more optical signals generated by said one or more seed pulse sources. The supercontinuum optical pulse source further comprises a first microstructured light-guiding member arranged along the first optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said first optical path, and a second microstructured light-guiding member arranged along the second optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said second optical path. The supercontinuum optical pulse source further comprises a supercontinuum-combining member to combine supercontinuum generated in at least the first and second microstructured light-guiding members to form a combined supercontinuum. The supercontinuum-combining member comprises an output fiber, wherein the output fiber comprises a multimode optical fiber supporting a plurality of spatial modes at one or more wavelengths of the combined supercontinuum.
Abstract:
An apparatus comprising a visible light source(s), multimode optical fiber(s), light coupler(s), an optional spatial light modulator(s), and an optional projection lens(es). The light source has a 1/e half-width emission bandwidth. The light coupler couples the light source to the multimode optical fiber(s) such that objective speckle contrast is reduced. The multimode optical fiber(s) may pass light from the coupler to an optional spatial light modulator. The spatial light modulator may modulate the light to form an image. The projection lens may transfer light onto an image plane or to illuminate objects. The objective speckle contrast at the end of the multimode fiber in combination with the projection lens diameter (if employed) and wavelength diversity may result in viewed images at the viewer's eye, or other detector, exhibiting speckle contrast that may be 1% or less.
Abstract:
A supercontinuum optical pulse source provides a combined supercontinuum. The supercontinuum optical pulse source comprises one or more seed pulse sources, and first and second optical amplifiers arranged along first and second respective optical paths. The first and second optical amplifiers are configured to amplify one or more optical signals generated by said one or more seed pulse sources. The supercontinuum optical pulse source further comprises a first microstructured light-guiding member arranged along the first optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said first optical path, and a second microstructured light-guiding member arranged along the second optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said second optical path. The supercontinuum optical pulse source further comprises a supercontinuum-combining member to combine supercontinuum generated in at least the first and second microstructured light-guiding members to form a combined supercontinuum. The supercontinuum-combining member comprises an output fibre, wherein the output fibre comprises a silica-based multimode optical fibre supporting a plurality of spatial modes at one or more wavelengths of the combined supercontinuum.
Abstract:
The invention provides a semiconductor optical modulator including a two-step mesa optical waveguide having a first clad layer (101); a mesa-like core layer (102) formed over the first clad layer (101); and a second clad layer (103) formed into a mesa shape over the core layer (102), and having a mesa width smaller than that of the core layer (102). The two-step mesa optical waveguide includes a multi-mode optical waveguide region to which an electric field is applied or into which an electric current is injected, and a single-mode optical waveguide region to which the electric field is not applied and into which the electric current is not injected. When the mesa width of the core layer in the multi-mode optical waveguide region is defined as Wmesa1, and the mesa width of the core layer in the single-mode optical waveguide region is defined as Wmesa2, Wmesa1>Wmesa2 is satisfied.