Abstract:
An IC that includes an eye viewer and a BER checker coupled to the eye viewer, where the BER checker receives a serial data signal from the eye viewer, is provided. In one implementation, the BER checker receives the serial data signal from the eye viewer without the serial data signal passing through a deserializer. In one implementation, the BER checker compares the serial data signal against a reference data signal to determine the BER for the serial data signal. In one implementation, the IC includes an IC core coupled to the eye viewer and the BER checker, where the BER checker is outside the IC core. In one implementation, the BER checker is a dedicated BER checker. In one implementation, the BER checker includes an exclusive OR gate, a programmable delay circuit coupled to the exclusive OR gate, and an error counter coupled to the exclusive OR gate.
Abstract:
In one embodiment, signaling and ground contacts are located in at least two parallel, rectilinear rows along at least one edge of an interconnect package such as a BGA package. In one row, each of a plurality of ground contacts is located between two pairs of contacts for receiving differential signals. In the second row, each of a plurality of ground contacts is located between two pairs of contacts for transmitting differential signals and the ground contacts in the second row are offset by one column from the ground contacts in the first row. As a result, the ratio of signaling pairs to ground contacts is 2:2. Additional pairs of rows may also be used. In other embodiments, signaling and ground contacts are located in three parallel, rectilinear rows along at least one edge of the package. In the first row, ground contacts alternate with contacts for receiving differential signals and in the second row ground contacts alternate with contacts for transmitting differential signals. The third row of contacts is located between the first and second rows and contains contacts for receiving differential signals that alternate with contacts for transmitting differential signals. The ground contacts in the second row are offset by one column from the ground contacts in the first row. In a second embodiment, the receiving contacts in the third row are in the same column as the receiving contacts in the first row; and the transmitting contacts in the third row are in the same column as the transmitting contacts in the second row. In a third embodiment, the contacts in the third row are offset by one column from the corresponding contacts in the first or second rows. Each pair of contacts for receiving differential signals is formed by a contact in the first row and an adjacent contact in the third row; and each pair of contacts for transmitting differential signals is formed by a contact in the second row and an adjacent contact in the third row.
Abstract:
Circuits and a method for correcting duty cycle distortions in an integrated circuit (IC) are disclosed. The IC includes a splitter circuit that is coupled to receive a clock signal. The clock signal is split into two different clock signals. One of the clock signals is an inverted version of the other. A delay circuit is coupled to each of the clock signals. Each of the delay circuits generates a delayed version of the corresponding clock signal. A corrector circuit is coupled to receive both the delayed versions of the clock signals. The corrector circuit generates a clock output signal with a corrected duty cycle.
Abstract:
An integrated circuit inductor may have upper and lower loop-shaped line portions that are connected in series. The upper and lower portions may have 45° bends that form hexagonal or octagonal loops. Each loop portion may have one or more turns. Intervening metal-free regions of metal routing layers may be formed between the two layers to reduce capacitive coupling. Each loop portion may have sets of two or more metal lines shorted in parallel by vias. The upper and lower loops may be laterally offset or nested to reduce capacitive coupling.
Abstract:
An integrated circuit (IC) package substrate with non-uniform dielectric layers is disclosed. The IC package substrate is a multilayer package substrate that has dielectric layers and metal layers stacked up alternately. The dielectric layers in the package substrate have different thickness. The metal layers may be ground, signal or power layers. A thicker dielectric layer is placed in between a signal layer and a power layer in the package substrate. The thicker dielectric layer may be at least twice as thick as other dielectric layers in the package substrate. The thicker dielectric layer may provide better impedance control in the package substrate.
Abstract:
An integrated circuit (IC) package with a plurality of chip capacitors placed on a surface of a die is disclosed. The chip capacitors may be placed on top of the die with an interposal substrate layer. Placing chip capacitors on top of the die may reduce the size of the packaging substrate required. One or more wires may be used to connect the chip capacitors on the interposal layer to the packaging substrate. The IC package may include a lid and a thermal interface material (TIM) placed on top of the die. The lid may be shaped such that a protruding portion of the lid contacts the die directly through the TIM to improve heat dissipation.
Abstract:
Embodiments in the disclosure include a multi-protocol transceiver including a configurable arrangement of receive and/or transmit circuitry. An exemplary transceiver can be selectively configured to effectively transmit and/or receive data communications corresponding to a select one of a plurality of high-speed communication protocols. Another more particular embodiment disclosed includes a configurable data path through link-wide Physical Coding Sub-layer ("PCS") circuitry including link-wide clock compensation, encoding/decoding, and scrambling/descrambling circuitry and lane striping/de-striping circuitry; the configurable data path further includes lane-wide circuitry including clock compensation, encoding/decoding, receive block sync, and Physical Medium Access sub-layer ("PMA") circuitry, and further includes bit muxing/de-muxing circuitry coupled to Physical Medium Dependent ("PMD") sub-layer circuitry.
Abstract:
An integrated circuit capable of monitoring analog voltages inside an analog block is presented. The integrated circuit has an analog test multiplexer (mux) whose inputs are connected to analog voltages of interest inside an analog block. The analog test multiplexer directs a selected analog voltage from an analog block to the output of the analog test mux. The integrated circuit further includes an analog monitor state machine which provides the selection bits to the analog test multiplexer, enabling random access to the analog voltages inside the analog block. The integrated circuit also includes an analog to digital converter for converting the selected analog voltage from the analog test multiplexer into a digital representation.
Abstract:
A varactor may have a first terminal connected to a gate. The gate may be formed from a p-type polysilicon gate conductor. The gate may also have a gate insulator formed from a layer of insulator such as silicon oxide. The gate insulator may be located between the gate conductor and a body region. Source and drain contact regions may be formed in a silicon body region. The body region and the source and drain may be doped with n-type dopant. The varactor may have a second terminal connected to the n-type source and drain. A control voltage may be used to adjust the level of capacitance produced by the varactor between the first and second terminals. A positive control voltage may produce a larger capacitance than a negative control voltage. Application of the negative control voltage may produce a depletion layer in the p+ polysilicon gate layer.
Abstract:
A circuit includes phase detection circuitry, a clock signal generation circuit, a first frequency divider, and a second frequency divider. The phase detection circuitry compares an input clock signal to a feedback signal to generate a control signal. The clock signal generation circuit generates a periodic output signal in response to the control signal. The first frequency divider divides a frequency of the periodic output signal by a first value to generate a first frequency divided signal. The second frequency divider divides the frequency of the periodic output signal by a second value to generate a second frequency divided signal. The first and the second frequency divided signals are routed to the phase detection circuitry as the feedback signal during different time intervals.